No CrossRef data available.
Article contents
On characterisation of finitary algebraic categories
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The aim of this article is to characterise categories which are V–algebraic (equals V–theoretical) over V where V is a symmetric monoidal closed category satisfying suitable limit-colimit commutativity conditions (basicly axiom π).
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 18 , Issue 1 , February 1978 , pp. 125 - 135
- Copyright
- Copyright © Australian Mathematical Society 1978
References
[1]Beck, Jon, “On H–spaces and infinite loop spaces”, Category theory, homology theory and their applications III, 139–153 (Proc. Conf. Seattle Research Center, Battelle Memorial Institute, 1968, Volume Three. Lecture Notes in Mathematics, 99. Springer-Verlag, Berlin, Heidelberg, New York, 1969).Google Scholar
[2]Boardman, J.M. and Vogt, R.M., “Homotopy–everything H–spaces”, Bull. Amer. Math. Soc. 74 (1968), 1117–1122.CrossRefGoogle Scholar
[3]Borceux, Francis and Day, B.J., “On product-preserving Kan extensions”, Bull. Austral. Math. Soc. 17 (1977), 247–255.CrossRefGoogle Scholar
[4]Borceux, Francis and Day, Brian, “Universal algebra in a closed category”, J. Pure Appl. Algebra (to appear).Google Scholar
[6]Diers, Y., “Foncteur pleinement fidèle dense classant les algèbres” (Publications Internes de l'U.E.R. de Mathématiques Pures et Appliquées, 58. Université des Science et Techniques de Lille I, 1975).Google Scholar
[7]Diers, Yves, “Type de densité d'une sous–catégorie pleine”, Ann. Soc. Sci. Bruxelles Sér. I 90 (1976), 25–47.Google Scholar
[8]lenberg, Samuel Ei and Kelly, G. Max, “Closed categories”, Proc. Conf. Categorical Algebra, La Jolla, California, 1965, 421–562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).CrossRefGoogle Scholar
[10]Lane, S. Mac, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[11]May, J.P., The geometry of iterated loop spaces (Lecture Notes in Mathematics, 271. Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
You have
Access