Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:42:35.504Z Has data issue: false hasContentIssue false

On Bleimann-Butzer-Hahn operators for exponential functions

Published online by Cambridge University Press:  17 April 2009

Ulrich Abel
Affiliation:
Fachhochschule Giessen-Friedberg, University of Applied Sciences, Fachbereich MND, 61169 Friedberg, Germany
Mircea Ivan
Affiliation:
Department of Mathematics, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some inequalities involving the binomial coefficients are obtained. They are used to determine the domain of convergence of the Bleimann, Butzer and Hahn approximation process for exponential type functions. An answer to Hermann's conjecture related to the Bleimann, Butzer and Hahn operators for monotone functions is given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, (ninth printing) (Dover, 1970).Google Scholar
[2]Bleimann, G., Butzer, P.L., and Hahn, L., ‘A Bernšteǐn-type operator approximating continuous functions on the semi-axis’, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), 255262.CrossRefGoogle Scholar
[3]Hermann, T., ‘On the operator of Bleimann, Butzer and Hahn’, in Approximation theory (Kecskemét, 1990), Colloq. Math. Soc. János Bolyai 58 (North-Holland, Amsterdam, 1991), pp. 355360,.Google Scholar
[4]Jayasri, C. and Sitaraman, Y., ‘Direct and inverse theorems for certain Bernstein-type operators’, Indian J. Pure Appl. Math. 16 (1985), 14951511.Google Scholar
[5]Jayasri, C. and Sitaraman, Y., ‘On a Bernstein-type operator of Bleimann, Butzer and Hahn’, J. Comput. Appl. Math. 7 (1993), 267272.CrossRefGoogle Scholar
[6]Jordan, C., Calculus of finite differences (Rőttig and Romwalter, Budapest, 1939).Google Scholar
[7]Lorentz, G.G., Bernstein polynomials (Univ. Toronto Press, Toronto, 1953).Google Scholar
[8]Totik, V., ‘Uniform approximation by Bernstein-type operators’, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), 8793.CrossRefGoogle Scholar