Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T19:18:06.740Z Has data issue: false hasContentIssue false

On algebraic numbers close to 1

Published online by Cambridge University Press:  17 April 2009

Artūras Dubickas
Affiliation:
Faculty of Mathematics, Vilnius University, Naugarduko 24, Vilnius 2006, Lithuania e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that there exists a polynomial of small height with a root close to 1. This implies that there are algebraic numbers close to 1 with relatively small Mahler measure. We also give an explicit construction of such numbers with small Weil height.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Amoroso, F., ‘Polynomials with prescribed vanishing at roots of unity’, Boll. Un. Mat. Ital. 7 (1995), 10211042.Google Scholar
[2]Amoroso, F., ‘Algebraic numbers close to 1 and variants of Mahler's measure’, J. Number Theory 60 (1996), 8096.CrossRefGoogle Scholar
[3]Amoroso, F., ‘Algebraic numbers close to 1: results and methods’, in Number theory, (Murthy, V.K. and Waldschmidt, M., Editors), Contemporary Mathematics 210 (American Mathematical Society, Berlin, Heidelberg, New York, 1997), pp. 305316.CrossRefGoogle Scholar
[4]Bugeaud, Y., ‘Algebraic numbers close to 1 in non-archimedean metrics’, J. Ramanujan Math. Soc. (to appear).Google Scholar
[5]Bombieri, E. and Vaaler, J.D., ‘On Siegel's lemma’, Invent. Math. 73 (1983), 1132.CrossRefGoogle Scholar
[6]Bombieri, E. and Vaaler, J.D., ‘Polynomials with low height and prescribed vanishing’, in Analytic number theory and diophantine problems, (Adolphson, A.C., Conrey, J.B., Ghosh, A. and Yager, R.I., Editors), Progress in Mathematics Series 70 (Birkhäuser, Basel, 1987), pp. 5373.CrossRefGoogle Scholar
[7]Bugeaud, Y., Mignotte, M. and Normandin, F., ‘Nombres algébriques de petite mesure et formes linéaires en un logarithme’, C.R. Acad. Sci. Paris Sér. I. 321 (1995), 517522.Google Scholar
[8]Dobrowolski, E., ‘On a question of Lehmer and the number of irreducible factors of a polynomial’, Acta Arith. 34 (1979), 391401.CrossRefGoogle Scholar
[9]Dubickas, A., ‘On algebraic numbers small measure’, Lithuanian Math. J. 35 (1995), 333342.CrossRefGoogle Scholar
[10]Dubickas, A., ‘On a polynomial with large number of irreducible factors’, in Proceedings of the International Number Theory Conference dedicated to Professor A. Schinzel on the occasion of his 60th birthday, (to appear).Google Scholar
[11]Mignotte, M., ‘Approximation des nombres algébriques par des nombres algébriques de grand degré’, Ann. Fac. Sci. Toulouse Math. 1 (1979), 165170.CrossRefGoogle Scholar
[12]Mignotte, M. and Waldschmidt, M., ‘On algebraic numbers of small height: linear forms in one logarithm’, J. Number Theory 47 (1994), 4362.CrossRefGoogle Scholar
[13]Schmidt, W.M., Diophantine approximation, Lecture Notes in Mathematics 785 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).Google Scholar
[14]Schur, I., ‘Untersuchungen über algebraische Gleichungen. I. Bemerkungen zu einem Satz von E. Schmidt.’, S.-B. preuss. Acad. Wiss. H. 7/10 (1933), 403428.Google Scholar