No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
We work in a Zermelo-Fraenkel set theory without the Axiom of Choice. In the appendix to his paper “Sur les ensembles finis”, Tarski proposed a finiteness criterion that we have called “C-finiteness”: a nonempty set is called “C-finite” if it cannot be partitioned into two blocks, each block being equivalent to the whole set. Despite the fact that this criterion can be shown to possess several features that are undesirable in a finiteness criterion, it has a fair amount of intrinsic interest. In Section 1 of this paper we look at a certain class of C-finite sets; in Section 2 we derive a few consequences from the negation of C-finiteness; and in Section 3 we show that not every C-infinite set necessarily possesses a linear ordering. Any unexplained notation is given in my paper, “Some definitions of finiteness”, Bull. Austral. Math. Soc. 5 (1971).