Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T20:25:59.987Z Has data issue: false hasContentIssue false

Numerical range and operators on locally convex spaces

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1976

References

[1]Allan, G.R., “A spectral theory for locally convex algebras”, Proc. London Math. Soc. (3) 15 (1965), 399421.CrossRefGoogle Scholar
[2]Bollobés, Béla and Eldridge, Stephen E., “The numerical ranges of unbounded linear operators”, Bull. Austral. Math. Soc. 12 (1975), 2325.CrossRefGoogle Scholar
[3]Bonsall, F.F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras (London Mathematical Society Lecture Notes Series, 2. Cambridge University Press, Cambridge, 1971).CrossRefGoogle Scholar
[4]Giles, J.R. and Joseph, G., “The numerical ranges of unbounded operators”, Bull. Austral. Math. Soc. 11 (1974), 3136.CrossRefGoogle Scholar
[5]Giles, J.R., Joseph, G., Koehler, D.O. and Sims, B., “On numerical ranges of operators on locally convex spaces”, J. Austral. Math. Soc. Ser. A 20 (1975), 468482.CrossRefGoogle Scholar
[6]Giles, J.R. and Koehler, D.O., “On numerical ranges of elements of locally m–convex algebras”, Pacific J. Math. 49 (1973), 7991.CrossRefGoogle Scholar
[7]Joseph, Gerard A., “Boundedness and completeness in locally convex spaces and algebras”, submitted.Google Scholar
[8]Moore, Robert T., “Adjoints, numerical ranges, and spectra of operators on locally convex spaces”, Bull. Amer. Math. Soc. 75 (1969), 8590.CrossRefGoogle Scholar