Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T15:19:19.307Z Has data issue: false hasContentIssue false

A note on regular metabelian groups of prime-power order

Published online by Cambridge University Press:  17 April 2009

M.F. Newman
Affiliation:
Mathematics Research Section, School of Mathematical Sciences, Australian National University, GPO Box 4, Canberra ACT 2601, Australia
Ming-Yao Xu
Affiliation:
Institute of Mathematics, Peking University, Beijing 100871, People's Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p be a prime and d, e positive integers. We prove that a regular d-generator metabelian p-group whose commutator subgroup has exponent pe has nilpotency class at most e(p – 2) + 1 unless e = 1, d > 2, p > 2 when the class can be p and these bounds are best possible.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Brisley, W. and Macdonald, I.D., ‘Two classes of metabelian groups’, Math. Z. 112 (1969), 512.CrossRefGoogle Scholar
[2]Gupta, N.D. and Newman, M.F., ‘On metabelian groups’, J. Austral Math. Soc. 6 (1966), 362368.CrossRefGoogle Scholar
[3]Gupta, N.D., Newman, M.F. and Tobin, S.J., ‘On metabelian groups of prime-power exponent’, Proc. Roy. Soc. London Ser. A 302 (1968), 237242.Google Scholar
[4]Huppert, B., Endliche Gruppen I.: Die Grundlehren der Mathematischen Wissenschaften 134 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[5]Meier-Wunderli, H., ‘Metabelischen Gruppen’, Comment. Math. Helv. 25 (1951), 110.CrossRefGoogle Scholar
[6]Newman, M.F., ‘Metabelian groups of prime-power exponent’, Groups-Korea 1983, in Lecture Notes in Mathematics 1098, pp. 8798 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).Google Scholar
[7]Xu, M.Y., On finite regular p-groups, Graduation Thesis at Peking University, 1964.Google Scholar