Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:57:41.204Z Has data issue: false hasContentIssue false

A note on Baric algebras

Published online by Cambridge University Press:  17 April 2009

Raúl Andrade
Affiliation:
Departamento de Matemáticas Facultad de Ciencias, Universidad de Chile, Casilla 653 Santiago, Chile
Alicia Labra
Affiliation:
Departamento de Matemáticas Facultad de Ciencias, Universidad de Chile, Casilla 653 Santiago, Chile
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we present a characterization of baric algebras. In particular we study those in which the identity x3 = w(x)x2 holds. Moreover, for every field K, we prove that this identity guarantees that the annihilator of Ker (w) is an ideal in A and we give example of a subspace of Ker (w) whose annihilator is not an ideal.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Alcalde, M.T., Burgueño, C., Labra, A. and Micali, A., ‘Sur les algèbres de Bernstein’, Proc.London Math. Soc. (3) 58 (1989), 5168.CrossRefGoogle Scholar
[2]Alcalde, M.T., Baeza, R. and Burgueño, C., ‘Autour des algebres de Bernstein’, Arch. Math. 53 (1989), 134140.CrossRefGoogle Scholar
[3]Etherington, I.M.H., ‘Commutative train algebras of ranks 2 and 3’, J. London Math. Soc. 15 (1940), 136149.CrossRefGoogle Scholar
[4]Holgate, P., ‘Genetic algebras satisfying Bernstein's stationarity principle’, J. London Math. Soc. (2) 9 (1975), 613623.CrossRefGoogle Scholar
[5]Ouattara, M., Algèbres de Jordan et algèbres génétiques, Thèse de Doctorat (Université de Montpellier II, France, 1988).Google Scholar
[6]Shafer, R.D., Introduction to nonassociative algebras (Academic Press, New York, 1966).Google Scholar
[7]Walcher, S., ‘Bernstein algebras which are Jordan algebras’, Arch. Math. 50 (1988), 218222.CrossRefGoogle Scholar
[8]Wörz–Busekros, A., Algebras in genetics, Lecture Notes in Biomathematics 36 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).CrossRefGoogle Scholar