Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:12:24.055Z Has data issue: false hasContentIssue false

A note on Baire spaces and continuous lattices

Published online by Cambridge University Press:  17 April 2009

Karl H. Hofmann
Affiliation:
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Baire category theorem for continuous lattices and derive category theorems for non-Hausdorff spaces which imply a category theorem of Isbell's and have applications to the spectral theory of C*-algebras. The same lattice theoretical methods yield a proof of de Groot's category theorem for regular subcompact spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Bourbaki, N., Éléments de Mathématique. I: Les structures fondamentales de l'analyse. Livre III: Topologie générale. Chapitre 9: “Utilisation des nombers réels en topologie générale”. Deuxième édition revue et augmentée (Hermann, Paris, 1958). See also: Nicolas Bourbaki, Elements of mathematics. General topology, Part 2. Chapter 9: “Use of real numbers in general topology” (Addison-Wesley, Reading, Massachusetts, 1966).Google Scholar
[2]Dixmier, Jacques, “Sur les C*-algèbres”, Bull. Soc. Math. France 88 (1960), 95112.Google Scholar
[3]Dixmier, Jacques, Les C*-algèbres et leurs représentations, deuxième édition (Cahiers Scientifiques, 29. Gauthier-Villars, Paris, 1969).Google Scholar
[4]Fleischer, Isidore, “On ‘Subcompactness and the Baire category theorem’”, Nederl. Akad. Wetensch. Proc. Ser. A 82 = Indag. Math. 41 (1979), 911.CrossRefGoogle Scholar
[5]Fleischer, Isidore and Reyes, Gonzalo E., The ℵ-Baire property (CRM Preprint, 425. Centre de Recherches Mathematiques et Department de Mathematiques, Montreal, 1974).Google Scholar
[6]Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., A compendium of continuous lattices (Springer-Verlag, Berlin, Heidelberg, New York, to appear).Google Scholar
[7]de Groot, J., “Subcompactness and the Baire category theorem”, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 761767.CrossRefGoogle Scholar
[8]Hoffmann, Rudolf -E., “Charakterisierung nüchterner Räume”, Manusoripta Math. 15 (1975), 185191.CrossRefGoogle Scholar
[9]Hofmann, Karl Heinrich, “Continuous lattices, topology and topological algebra”, Topology Proc. 2 (1977), 179212.Google Scholar
[10]Hofmann, Karl H. and Lawson, Jimmie D., “Irreducibility and generation in continuous lattices”, Semigroup Forum 13 (1976/1977), 307353.CrossRefGoogle Scholar
[11]Hofmann, Karl H. and Lawson, Jimmie D., “The spectral theory of distributive continuous lattices”, Trans. Amer. Math. Soc. 246 (1978), 285310.CrossRefGoogle Scholar
[12]Isbell, John R., “Function spaces and adjoints”, Math. Scand. 36 (1975), 317339.CrossRefGoogle Scholar
[13]Lawson, J.D., “Joint continuity in semitopological semigroups”, Illinois J. Math. 18 (1974), 275285.CrossRefGoogle Scholar
[14]Lawson, Jimmie D., “Additional notes on continuity in semitopological semigroups”, Semigroup Forum 12 (1976), 265280.CrossRefGoogle Scholar
[15]Namioka, I., “Separate continuity and joint continuity”, Pacific J. Math. 51 (1974), 515531.CrossRefGoogle Scholar
[16]Scott, Dana, “Continuous lattices”, Toposes, algebraic geometry and logic, 97136 (Lecture Notes in Mathematics, 274. Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[17]Ward, A.S., Problem, p. 352 of Proceedings of the International Symposium on Topology and its Applications, Herceg-Novi, 1968, Yugoslavia [ сuΜnοаuя nο u ее ⊓рuμнеuяХ, Херцеγ-НοΒи, 1968, ю-οслаΒия] (Savez Drustava Matematicara, Fizicara I Astronoma, Belgrade, 1969).Google Scholar