Published online by Cambridge University Press: 18 June 2010
Let σA(n)=∣{(a,a′)∈A2:a+a′=n}∣, where n∈ℕ and A is a subset of ℕ. Erdős and Turán con-jectured that for any basis A of ℕ, σA(n) is unbounded. In 1990, Ruzsa constructed a basis A⊂ℕ for which σA(n) is bounded in square mean. Based on Ruzsa’s method, we proved that there exists a basis A of ℕ satisfying ∑ n≤Nσ2A(n)≤1449757928N for large enough N. In this paper, we give a quantitative result for the existence of N, that is, we show that there exists a basis A of ℕ satisfying ∑ n≤Nσ2A(n)≤1069693154N for N≥7.628 517 798×1027, which improves earlier results of the author [‘A note on a result of Ruzsa’, Bull. Aust. Math. Soc.77 (2008), 91–98].