No CrossRef data available.
Article contents
Norms in polynomial rings
Published online by Cambridge University Press: 17 April 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We give a formula for the norm on a polynomial ring modulo an ideal in terms of the zero-set of the ideal. We hint at the relation to resultants.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1990
References
[1]Barnett, S., ‘Greatest common divisor of two polynomials’, Linear Algebra Appl. 3 (1970), 7–9.CrossRefGoogle Scholar
[2]Čebotarev, N.G., Teorija Galua (Mathematika w Monografijach, Serija Obsorow I, Moskwa, Leningrad, 1936).Google Scholar
[3]Gröbner, W., Moderne algebraische Geometrie (Springer, Vienna and Innsbruck, 1949).CrossRefGoogle Scholar
[4]Kalman, R.E., ‘Mathematical description of linear dynamical systems’, SIAM J. Control 1 (1963), 152–192.Google Scholar
[6]McCoy, N.H., ‘Divisors of zero in matric rings’, Bull.Amer.Math.Soc. 47 (1941), 166–172.CrossRefGoogle Scholar
[9]Schmidt, H., ‘Bemerkung zur elementaren Algebra: I. Restklassenring und Resultante’, Bayer. Akad. Wiss. Math. – Natur. Kl. Sitzungsber. 1966 II (1967), 167–172.Google Scholar
[10]Vogt, W.G. and Bose, N.K., ‘A method to determine whether two polynomials are relatively prime’, IEEE Trans. Automat. Control AC–15 (1970), 379–380.CrossRefGoogle Scholar
You have
Access