Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:07:02.954Z Has data issue: false hasContentIssue false

Normalizer of parabolic aubgroups in unitary reflection groups

Published online by Cambridge University Press:  17 April 2009

Krishnasamy Muraleedaran
Affiliation:
Department of Maths UGRU, United Arab Emirates University, Al-Ain, United Arab Emirates, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Broué, M. and Michel, J., ‘Towards spetses. I’, Transform. Groups 4 (1999), 157219.CrossRefGoogle Scholar
[2]Cameron, P.J., Boethals, J.M., Seidel, J.J. and Shult, E.E., ‘Line graph, root system and elliptic geometry’, J. Algebra 43 (1076), 305327.Google Scholar
[3]Cohen, A.M., ‘Finite complex reflection groups’, Ann. Sci. École Norm. Sup. (4) 9 (1976), 379436.CrossRefGoogle Scholar
[4]Cohen, A.M., ‘Erratum: Finite complex reflection groups’, Ann. Sci. École Norm. Sup. (4) 11 (1978), 613.CrossRefGoogle Scholar
[5]Coxeter, H.S.M., ‘Finite groups generated by unitary reflections’, Abh. Math. Sem. Univ. Hamburg 31 (1967), 125135.Google Scholar
[6]Howlett, R.B., ‘Normalizers of parabolic subgroups of reflection groups’, J. London Math. Soc. (2) 21 (1980), 6280.Google Scholar
[7]Howlett, R.B. and Shi, J.-Y., ‘On regularity of finite reflection groups’, Manuscripta Math. 102 (2000), 325333.CrossRefGoogle Scholar
[8]Hughes, M.C., ‘Complex reflection groups’, Comm. Algebra 18 (1990), 39994029.CrossRefGoogle Scholar
[9]Lehrer, B.I. and Springer, T.A., ‘Reflection subquotients of unitary reflection groups’, Canad. J. Math. 51 (1999), 11751193.Google Scholar
[10]Mak, C.K., ‘Quasi-paraboic subroups of g(m, l, r)’, J. Algebra 246 (2001), 471490.Google Scholar
[11]Mitchell, H.H., ‘Determination of all primitive collineation groups in more than four variables which contain homologies’, Amer. J. Math. 36 (1914), 112.Google Scholar
[12]Orlik, P. and Solomon, L., ‘Arrangements defined by unitary reflection groups’, Math. Ann. 261 (1982), 339357.Google Scholar
[13]Shephard, G.C., ‘Unitary groups generatted by reflections’, Canad. J. Math. 5 (1953), 364383.Google Scholar
[14]Shephard, G.C. and Todd, J.A., ‘Finite unitary reflection groups’, Canad. J. Math. 6 (1954), 274304.CrossRefGoogle Scholar
[15]Springer, T.A., ‘Regular elements of reflection groups’, Invent. Math. 25 (1974), 159198.Google Scholar