No CrossRef data available.
Article contents
Nonlinear dynamics in infant respiration
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
![Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'](https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0004972700036480/resource/name/firstPage-S0004972700036480a.jpg)
- Type
- Abstracts of Australasian Ph.D. Theses
- Information
- Bulletin of the Australian Mathematical Society , Volume 60 , Issue 2 , October 1999 , pp. 345 - 347
- Copyright
- Copyright © Australian Mathematical Society 1999
References
[1]Abarbanel, H.D.I., Analysis of observed chaotic data, Institute for nonlinear science (Springer-Verlag, Berlin, Heidelberg, New York, 1996).CrossRefGoogle Scholar
[2]Judd, K., ‘An improved estimator of dimension and some comments on providing confidence intervals’, Phys. D. 56 (1992), 216–228.CrossRefGoogle Scholar
[3]Judd, K., ‘Estimating dimension from small samples’, Phys. D. 71 (1994), 421–429.CrossRefGoogle Scholar
[4]Judd, K. and Mees, A., ‘On selecting models for nonlinear time series’, Phys. D. 82 (1995), 426–444.CrossRefGoogle Scholar
[5]Judd, K. and Mees, A., ‘Embedding as a modelling problem’, Phys. D. 120 (1998), 273–286.CrossRefGoogle Scholar
[6]Kantz, H. and Schreiber, T., Nonlinear time series analysis, Cambridge Nonlinear Science Series 7 (Cambridge University Press, Cambridge, 1997).Google Scholar
[7]Kaplan, D. and Glass, L., Understanding nonlinear dynamics, Texts in Applied Mathematics 19 (Springer-Verlag, Berlin, Heidelberg, New York, 1996).Google Scholar
[8]Small, M. and Judd, K., ‘Using surrogate data to test for nonlinearity in experimental data’, in International Symposium on Nonlinear Theory and its Applications 2 (Research Society of Nonlinear Theory and its Applications, IEICE, 1997), pp. 1133–1136.Google Scholar
[9]Small, M. and Judd, K., ‘Comparison of new nonlinear modelling techniques with applications to infant respiration’, Phys. D. 117 (1998), 283–298.CrossRefGoogle Scholar
[10]Small, M. and Judd, K., ‘Detecting nonlinearity in experimental data’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 8 (1998), 1231–1244.CrossRefGoogle Scholar
[11]Small, M. and Judd, K., ‘Pivotal statistics for non-constrained realizations of composite null hypotheses in surrogate data analysis’, Phys. D. 120 (1998), 386–400.CrossRefGoogle Scholar
[12]Small, M. and Judd, K.. ‘Detecting periodicity in experimental data using linear modeling techniques’, Phys. Rev. E. 59 (1999), 1379–1385.CrossRefGoogle Scholar
[13]Small, M., Judd, K., Lowe, M. and Stick, S., ‘Is breathing in infants chaotic? Dimension estimates for respiratory patterns during quiet sleep’, J. Appl. Physiol. 86 (1999), 359–376.CrossRefGoogle ScholarPubMed
[14]Small, M., Judd, K. and Mees, A., ‘Testing time series for nonlinearity’, Statistics and Computing (1999) (to appear).Google Scholar
[15]Small, M., Judd, K. and Stick, S., ‘Linear modelling techniques detect periodic respiratory behaviour in infants during regular breathing in quiet sleep’, (abstract), Am. J. Resp. Crit. Care. Med. 153 (1996), A79.Google Scholar
[16]Tokens, F., ‘Detecting nonlinearities in stationary time series’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3 (1993), 241–256.CrossRefGoogle Scholar
[17]Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D., ‘Testing for nonlinearity in time series: The method of surrogate data’, Phys. D. 58 (1992), 77–94.CrossRefGoogle Scholar
[18]Theiler, J. and Prichard, D., ‘Constrained-realization Monte-Carlo method for hypothesis testing’, Phys. D. 94 (1996), 221–235.CrossRefGoogle Scholar