Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T15:04:34.441Z Has data issue: false hasContentIssue false

A MULTIPLICATIVE SCHWARZ ALGORITHM FOR THE NONLINEAR COMPLEMENTARITY PROBLEM WITH AN M-FUNCTION

Published online by Cambridge University Press:  26 August 2010

YINGJUN JIANG
Affiliation:
Department of Mathematics and Science Computing, Changsha University of Science and Technology, Changsha, 410004, PR China (email: [email protected])
JINPING ZENG*
Affiliation:
College of Computer Science, Dongguan University of Technology, Dongguan, 523005, PR China (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A multiplicative Schwarz iteration algorithm is presented for solving the finite-dimensional nonlinear complementarity problem with an M-function. The monotone convergence of the iteration algorithm is obtained with special choices of initial values. Moreover, by applying the concept of weak regular splitting, the weighted max-norm bound is derived for the iteration errors.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

This work is supported by the National Natural Science Foundation of China (Grants 10901027, 10971058).

References

[1]Bedea, L., ‘On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems’, SIAM J. Numer. Anal. 28 (1991), 179204.CrossRefGoogle Scholar
[2]Benzi, M., Frommer, A. and Nabben, R., ‘Algebraic theory of multiplicative Schwarz methods’, Numer. Math. 89 (2001), 605639.CrossRefGoogle Scholar
[3]Berman, A. and Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (Academic Press, New York, 1979).Google Scholar
[4]Hoffmann, K.-H. and Zou, J., ‘Parallel solution of variational inequality problems with nonlinear source terms’, IMA J. Numer. Anal. 16 (1996), 3145.CrossRefGoogle Scholar
[5]Hoppe, R. H. W., ‘Multigrid algorithms for variational inequalities’, SIAM J. Numer. Anal. 24 (1987), 10461065.CrossRefGoogle Scholar
[6]Householder, A. S., The Theory of Matrices in Numerical Analysis (Blaisdell, Waltham, MA, 1964).Google Scholar
[7]Isac, G., Complementarity Problems (Springer, Berlin, 1992).CrossRefGoogle Scholar
[8]Jiang, Y. J. and Zeng, J. P., ‘An L -error estimate for finite element solution of nonlinear elliptic problem with a source term’, Appl. Math. Comput. 174 (2006), 134149.Google Scholar
[9]Kuznetsov, Y., Neittaanmäki, P. and Tarvainen, P., ‘Overlapping domain decomposition methods for the obstacle problem’, in: Domain Decomposition Methods in Science and Engineering, (eds. Kuznetsov, Y., Peraux, J., Quarteroni, A. and Widlund, O.) (American Mathematical Society, Providence, RI, 1994), pp. 271277.CrossRefGoogle Scholar
[10]Kuznetsov, Y., Neittaanmäki, P. and Tarvainen, P., ‘Schwarz methods for obstacle problems with convection diffusion operators’, in: Domain Decomposition Methods in Scientific and Engineering Computing, Contemporary Mathematics, 180 (eds. Keyes, D. E. and Xu, J. C.) (American Mathematical Society, Providence, RI, 1995), pp. 251256.Google Scholar
[11]Lions, P. L., ‘On the Schwarz alternating method. I’. First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) (eds. Glowinshi, R., Golub, G. H., Meurant, G. A. and Périaux, J.) (SIAM, Philadelphia, PA, 1988), pp. 142.Google Scholar
[12]Lions, P. L., ‘On the Schwarz alternating method. II’. Stochastic Interpretation and Order Properties, Proceedings of Domain Decomposition Methods (Los Angeles, CA, 1988) (eds. Chan, T. F., Glowinski, R., Périaux, J. and Widlund, O. B.) (SIAM, Philadelphia, PA, 1989), pp. 4770.Google Scholar
[13], T., Shih, T. M. and Liem, C. B., ‘Parallel algorithms for variational inequalities based on domain decomposition’, J. Comput. Math. 9 (1991), 340349.Google Scholar
[14], T., Shih, T. M. and Liem, C. B., Domain Decomposition Methods — New Numerical Technique for Solving PDE (Science Press, Beijing, 1992).Google Scholar
[15]Luo, Z. Q. and Tseng, P., ‘Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem’, SIAM J. Optim. 2 (1992), 4354.CrossRefGoogle Scholar
[16]Machida, N., Fukushima, M. and Ibaraki, T., ‘A multisplitting method for symmetric linear complementarity problems’, J. Comput. Appl. Math. 62 (1995), 217227.CrossRefGoogle Scholar
[17]Moré, J. and Rheinboldt, W. C., ‘On P- and S-functions and related class of n-dimensional nonlinear mappings’, Linear Algebra Appl. 6 (1973), 4568.CrossRefGoogle Scholar
[18]Ortega, J. M. and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).Google Scholar
[19]Scarpini, F., ‘The alternative Schwarz method applied to some biharmonic variational inequalities’, Calcolo 27 (1990), 5772.CrossRefGoogle Scholar
[20]Smith, B., Bjørstad, P. and Gropp, W., Domain Decomposition (Cambridge University Press, Cambridge, 1996).Google Scholar
[21]Tarvainen, P., ‘Block relaxation methods for algebraic obstacle problems with M-matrices: theory and applications’, Doctoral Thesis, Department of Mathematics, University of Jyväskylä, 1994.Google Scholar
[22]Tarvainen, P., ‘On the convergence of block relaxation methods for algebraic obstacle problems with M-matrices’, East-West J. Numer. Math. 4 (1996), 6982.Google Scholar
[23]Varga, R., Matrix Iterative Analysis (Prentice Hall, Englewood Cliffs, NJ, 1962).Google Scholar
[24]Zeng, J. P., Li, D. H. and Fukushima, M., ‘Weighted max-norm estimate of additive Schwarz iteration algorithm for solving linear complementarity problems’, J. Comput. Appl. Math. 131 (2001), 114.CrossRefGoogle Scholar
[25]Zeng, J. P. and Zhou, S. Z., ‘On monotone and geometric convergence of Schwarz methods for two-sided obstacle problems’, SIAM J. Numer. Anal. 35 (1998), 600616.CrossRefGoogle Scholar