Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T16:03:46.088Z Has data issue: false hasContentIssue false

Modules arising from some relative injectives

Published online by Cambridge University Press:  17 April 2009

Yiqiang Zhou
Affiliation:
Department of MathematicsUniversity of British ColumbiaVancouver BCCanada V6T 1Z2
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A ring R is a right SI-ring if every singular right R-module is injective, while R is a right S3I-ring if every singular semisimple right R-module is injective. In this paper, we investigate and characterise several analogues of the two notions to modules, with many illustrative examples included.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Anderson, F.W. and Fuller, K.R., Rings and categories of modules (Springer-Verlag, Berlin, Heidelberg, New York, 1994).Google Scholar
[2]Baccella, G., ‘Generalized V-rings and non Neumann regular rings’, Rend. Sem. Mat. Univ. Padova 72 (1984), 117133.Google Scholar
[3]Goodearl, K.R., ‘Singular torsion and the splitting properties’, Mem. Amer. Math. Soc. 124 (1972).Google Scholar
[4]Harmanci, A. and Smith, P.F., ‘Relative injectivity and module classes’, Comm. Algebra 20 (1992), 24712502.Google Scholar
[5]Hirano, Y., ‘Regular modules and V-modules’, Hiroshima Math. J. 11 (1981), 125142.Google Scholar
[6]Huynh, D.V., Dung, N.V. and Wisbauer, R., ‘On modules with finite uniform and Krull dimension’, Arch. Math. 57 (1991), 122132.Google Scholar
[7]Huynh, D.V., Smith, P.F. and Wisbauer, R., ‘A note on GV-modules with Krull dimension’, Glasgow Math. J. 32 (1990), 389390.Google Scholar
[8]Huynh, D.V. and Wisbauer, R., ‘A structure theorem for SI-modules’, Glasgow Math. J. 34 (1992), 8389.Google Scholar
[9]Mohamed, S.H. and Müller, B.J., Continuous modules and discrete modules (Cambridge University Press, Cambridge, 1990).Google Scholar
[10]Osofsky, B.L., ‘Rings all of whose finitely generated modules are injective’, Pacific J. Math. 14 (1964), 645650.CrossRefGoogle Scholar
[11]Osofsky, B.L. and Smith, P.F., ‘Cyclic modules whose quotients have complements direct summands’, J. Algebra 139 (1991), 342354.Google Scholar
[12]Page, S.S. and Yousif, M.F., ‘Relative injectivity and chain conditions’, Comm. Algebra 17 (1989), 899924.CrossRefGoogle Scholar
[13]Shock, R.C., ‘Dual generalizations of the Artinian and Noetherian conditions’, Pacific J. Math. 54 (1974), 227235.Google Scholar
[14]Tomonaga, H., ‘On s-unital rings’, Math. J. Okayama Univ. 18 (1976), 117134.Google Scholar
[15]Wisbauer, R., ‘Localization of modules and central closure of rings’, Comm. Algebra 9 (1981), 14551493.Google Scholar
[16]Wisbauer, R., ‘Generalized co-semisimple modules’, Comm. Algebra 8 (1990), 42354253.Google Scholar
[17]Wisbauer, R., Foundations of modules and ring theory (Gordon and Breach Science Publishers, 1991).Google Scholar
[18]Yousif, M.F., ‘SI-modules’, Math. J. Okayama Univ. 28 (1986), 133146.Google Scholar
[19]Zhou, Y., ‘Direct sums of M-injective modules and module classes’, Comm. Algebra 23 (1995), 927940.Google Scholar
[20]Zhou, Y., ‘Notes on weakly-semisimple rings’, Bull. Austral. Math. Soc. 52 (1995), 517525.Google Scholar