Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:02:50.409Z Has data issue: false hasContentIssue false

Méthodes fonctionnelles pour la transcendance en caractéristique finie

Published online by Cambridge University Press:  17 April 2009

Laurent Denis
Affiliation:
Université Pierre et Marie CurieU.F.R. 920 “Problèmes diophantiens” 4 Place Jussieu Tour 45–46, 5-ième étage 75252 ParisFrance
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are essentially two ways to obtain transcendence results in finite characteristic. The first, historically, is to use Ore's lemma and to prove that a series whose coefficients satisfy well-behaved divisibility properties cannot be a zero of an additive polynomial. This method is of the same kind as the method of p–automata. The second one is to try to imitate the usual methods in characteristic zero and to do transcendence theory with t–modules analogously to what we can do with algebraic groups. We want to show here that transcendence results over Fq(T) can also be obtained with the help of the variable T. If ec(z) is the Carlitz exponential function and e = ec(1), we obtain, in particular, that 1, e, …, e(p–2) (the P–2 first derivative of e with respect to T) are linearly independent over the algebraic closure of Fq(T). A corollary is that for every non-zero element α in Fq((1/T)), αpe and αec(e1/p) are transcendental over Fq(T). By changing the variable and using older results we also obtain the transcendence of ec(ω) for all ω ∈ Fq((1/T)) such that ω(T) and ω(Ti) are not zero and linearly dependent over Fq (Ti) (q > 2i + 1). Such u appear to be transcendental by the method of Mahler if i is not a power of p.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Becker, P-G., ‘Transcendence measures for the values of generalized Mahler functions in arbitrary characteristic’, Chapter 2.6 of the Habilitationsschrift, à paraître aux publications de Debrecen.Google Scholar
[2]Becker, P.G., ‘Transcendence of the values of functions satisfying generalized Mahler type functional equations’, J. Reine Angew. Math. 440 (1993), 111128.Google Scholar
[3]Berthe, V., ‘Automates et valeurs de transcendance du logarithme de Carlitz’, à paraître dans Acta-Arithmetica, 1994.CrossRefGoogle Scholar
[4]Bundschuh, P., ‘Transzendenzmasse in Körpern formaler LaurentreihenJ. Reine Angew. Math. 299–300 (1978), 411432.Google Scholar
[5]Carlitz, L., ‘On certain functions connected with polynomials in a Galois field’, Duke Math. J. 1 (1935), 137168.Google Scholar
[6]Christol, G., Kamae, T., France, M. Mendes et Rauzy, G., ‘Suites algébriques, automates et substitutions’, Bull. Soc. Math. France 108, (1980), 401420.CrossRefGoogle Scholar
[7]Damamme, G., Lettre à l'auteur.Google Scholar
[8]Denis, L., ‘Théorème de Baker et modules de Drinfeld’, J. Number Theory 43 (1993), 203215.CrossRefGoogle Scholar
[9]Denis, L., ‘Transcendance et dérivées de l'exponentielle de Carlitz’, in Séminaire de Théorie des Nombrea de Paris (Birkäuser, 1993), pp. 121.Google Scholar
[10]Denis, L., ‘Dérivées d'un module de Drinfeld et transcendance’, tapuscript.Google Scholar
[11]Denis, L., ‘Indépendance algébrique sur le module de Carlitz’, C.R. Acad. Sci. Paris Sér. I Math 317 (1993), 913915.Google Scholar
[12]Loxton, J.H. et Van der Poorten, A.J., ‘Transcendence and algebraic independence by a method of Mahler’, dans Transcendence theory: Advances and Applications, (Baker, A. et éditeurs, D.W. Masser), 1977, pp.211226.Google Scholar
[13]Wade, L., ‘Transcendence properties of the Carlitz Ψ function’, Duke Math. J. 13 (1946), 7985.Google Scholar
[14]Waldschmidt, M., Nombres transcendants, Lecture Notes in Math 402 (Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
[15]Yu, J., ‘Transcendence and Drinfeld modules: Several variables’, Duke Math. J. 58 (1989), 559575.Google Scholar
[16]Yu, J., ‘A six exponentials theorem in finite characteristic’, Math. Ann. 272 (1985), 9198.Google Scholar