No CrossRef data available.
Article contents
Maximum principles for some quasilinear degenerate elliptic-parabolic operators
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Abstracts of Australasian PhD Theses
- Information
- Copyright
- Copyright © Australian Mathematical Society 1973
References
[1]Bony, Jean-Michel, “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969), 277–304.CrossRefGoogle Scholar
[2]Hill, C. Denson, “A sharp maximum principle for degenerate elliptic-parabolic equations”, Indiana Univ. Math. J. 20 (1970), 213–229.CrossRefGoogle Scholar
[3]Pucci, Carlo, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico I”, Atti Accad. Naz. Linaei Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 370–375.Google Scholar
[4]Pucci, Carlo, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico II”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 24 (1958), 3–6.Google Scholar
[5]Redheffer, Ray, “A sharp maximum principle for nonlinear inequalities”, Indiana Univ. Math. J. 21 (1971), 227–248.CrossRefGoogle Scholar
[6]Výborný, R., “On a certain extension of the maximum principle”, Differential equations and their applications, 223–228 (Proc. Conf. Prague, September 1962. Publishing House of the Czechoslovak Academy of Sciences, Prague; Academic Press, New York, London, 1963).Google Scholar
You have
Access