Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T23:49:31.328Z Has data issue: false hasContentIssue false

Maximum principles for some quasilinear degenerate elliptic-parabolic operators

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Bony, Jean-Michel, “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969), 277304.CrossRefGoogle Scholar
[2]Hill, C. Denson, “A sharp maximum principle for degenerate elliptic-parabolic equations”, Indiana Univ. Math. J. 20 (1970), 213229.CrossRefGoogle Scholar
[3]Pucci, Carlo, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico I”, Atti Accad. Naz. Linaei Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 370375.Google Scholar
[4]Pucci, Carlo, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico II”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 24 (1958), 36.Google Scholar
[5]Redheffer, Ray, “A sharp maximum principle for nonlinear inequalities”, Indiana Univ. Math. J. 21 (1971), 227248.CrossRefGoogle Scholar
[6]Výborný, R., “On a certain extension of the maximum principle”, Differential equations and their applications, 223228 (Proc. Conf. Prague, September 1962. Publishing House of the Czechoslovak Academy of Sciences, Prague; Academic Press, New York, London, 1963).Google Scholar