Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T18:32:29.509Z Has data issue: false hasContentIssue false

LEFT AND RIGHT EIGENVECTORS OF A VARIANT OF THE SYLVESTER–KAC MATRIX

Published online by Cambridge University Press:  19 June 2023

WENCHANG CHU
Affiliation:
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou (Henan), China e-mail: [email protected], [email protected]
EMRAH KILIÇ*
Affiliation:
Mathematics Department, TOBB University of Economics and Technology, 06560 Sögütözü, Ankara, Turkey
Rights & Permissions [Opens in a new window]

Abstract

As an extension of Sylvester’s matrix, a tridiagonal matrix is investigated by determining both left and right eigenvectors. Orthogonality relations between left and right eigenvectors are derived. Two determinants of the matrices constructed by the left and right eigenvectors are evaluated in closed form.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction and motivation

Tridiagonal matrices are an important class of matrices in mathematics and physics (see [Reference Aitken1, Reference Clement8, Reference Ikramov13, Reference Muir17, Reference Nomura and Terwilliger18, Reference Vein and Dale21]). One particular case whose determinant evaluation was conjectured (without proof) by Sylvester [Reference Sylvester19, page 305] is

$$ \begin{align*} \det_{\substack{0\le i,j\le m}} [\tau_{i,j}] =\prod_{k=0}^m(x+m-2k), \end{align*} $$

where the matrix entries are given by

$$ \begin{align*} \tau_{i,j} = \begin{cases} x & \mbox{if } i=j, \\ j & \mbox{if } j-i=1, \\ m-j & \mbox{if } i-j=1, \\ 0 & \mbox{if } |i-j|>1. \end{cases} \end{align*} $$

For this elegant result, there exist a number of generalisations and applications (see, for example, [Reference Askey, Begehr, Gilbert, Muldoon and Wong2, Reference Boros and Rózsa4, Reference da Fonseca, Mazilu, Mazilu and Williams9Reference Holtz, Begehr, Gilbert, Muldoon and Wong11, Reference Kac14Reference Kılıç and Arikan16, Reference Taussky and Todd20]). However, eigenvectors have only been found for a few related tridiagonal matrices (see [Reference Bevilacqua and Bozzo3, Reference Chu6, Reference Chu and Wang7, Reference Hu12]).

The first proof of Sylvester’s determinant formula is attributed by Muir [Reference Muir17, page 442] to Francesco Mazza in 1866. However, Kac [Reference Kac14] was perhaps the first to give a complete proof of the formula claimed by Sylvester and provided a polynomial characterisation of the eigenvectors through the generating function approach. Therefore, the matrix $[\tau _{i,j}]$ is also called the Sylvester–Kac matrix.

The first author [Reference Chu5] examined the following extended matrix (here, y has been replaced by $2y$ to avoid rational expressions for the eigenvalues). For two free variables $x,~y$ , we define the tridiagonal matrix of order $m+1$ by

$$ \begin{align*} \Omega_m(x,y)=[\sigma_{i,j}(x,y)]_{0\le i,j\le m}, \end{align*} $$

where

$$ \begin{align*} \sigma_{i,j}(x,y)= \begin{cases} x+2jy & \mbox{if } i-j=0, \\ m-j & \mbox{if } i-j=1, \\ j & \mbox{if } j-i=1, \\ 0 & \mbox{if } |i-j|>1. \end{cases} \end{align*} $$

For instance, $\Omega _5(x,y)$ is illustrated as follows (where zeros are omitted).

$$ \begin{align*} \Omega_5(x,y)=\left[ \begin{array}{cccccc} x&1\\ 5&x+2y&2\\ &4&x+4y&3\\ &&3&x+6y&4\\ &&&2&x+8y&5\\ &&&&1&x+10y\end{array} \right]\end{align*} $$

The eigenvalues of $\Omega _m(x,y)$ were explicitly determined in [Reference Chu5]): that is,

$$ \begin{align*} \mathcal{P}_{2n+\delta}(x,y)=\left\{\lambda_k:=x+(2n+\delta)y+(2k-\delta)\sqrt{1+y^2}\right\} ^{n+\delta}_{k=-n}, \end{align*} $$

where we write $m=\delta +2n$ with $\delta =0,~1$ , in accordance with the parity of m.

In mathematics, physics and applied sciences, it is important to determine, not only determinants and eigenvalues, but also eigenvectors for certain classes of matrices. The aim of the present paper is to determine the left and right eigenvectors of $\Omega _m(x,y)$ . Our findings may potentially serve as testing samples (in the sense of [Reference Clement8]) to assess the numerical accuracy of algorithms for computations on similar matrices.

The paper is organised as follows. In the next section, the eigenvectors of $\Omega _m(x,y)$ are determined explicitly by following the same approach as in [Reference Chu6]. In Section 3, we prove orthogonality relations between the left and right eigenvectors. Finally in Section 4, we evaluate, in closed form, the two determinants constructed, respectively, by the left eigenvectors and the right ones.

2 Left and right eigenvectors

For the sake of brevity, define the algebraic function $\rho $ by

$$ \begin{align*} \rho =y+\sqrt{1+y^{2}}. \end{align*} $$

Then the eigenvectors of $\Omega _{m}(x,y)$ are determined by the following theorem.

Theorem 2.1. Let $\lambda _k$ be an eigenvalue of $\Omega _m(x,y)$ with $-n\le k\le n+\delta $ . Then the following two statements hold.

  1. (a) The vector ${\textbf {u}_k=(u_k(0),u_k(1),\ldots ,u_k(m))}$ is a left eigenvector corresponding to the eigenvalue $\lambda _k$ , where $u_k(j)$ is defined by the binomial sum

    $$ \begin{align*}u_k(j)=\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j}.\end{align*} $$
  2. (b) The vector ${\textbf {v}}_k=(v_k(0),v_k(1),\ldots ,v_k(m))$ is a right eigenvector corresponding to the eigenvalue $\lambda _k$ , where $v_k(i)$ is defined by the binomial sum

    $$ \begin{align*}v_k(i)=\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i}.\end{align*} $$

Proof. We begin by showing that $\textbf {u}_k$ is the left eigenvector corresponding to the eigenvalue $\lambda _k$ . It suffices to prove that, for each pair $(k,j)$ ,

$$ \begin{align*}\lambda_ku_k(j) &=\sum_{i=0}^m\sigma_{i,j}(x,y)u_k(i)\\ &=\sigma_{j,j}(x,y)u_k(j) +\sigma_{j-1,j}(x,y)u_k(j-1) +\sigma_{j+1,j}(x,y)u_k(j+1), \end{align*} $$

which can be, equivalently, restated as

(2.1) $$ \begin{align}(\lambda_k-x-2jy)u_k(j) =ju_k(j-1)+(m-j)u_k(j+1).\end{align} $$

Observing the functional relations

$$ \begin{align*} \rho=y+\sqrt{1+y^2} \quad\rightleftharpoons\quad y=\frac{\rho^2-1}{2\rho}, \end{align*} $$

we can manipulate the expression

$$ \begin{align*}\lambda_k-x-2jy&=(2n-2j+\delta)y+(2k-\delta)\sqrt{1+y^2}\\ &=(2n-2j-2k+2\delta)y+(2k-\delta)\rho, \end{align*} $$

which leads to the useful relation

(2.2) $$ \begin{align}\lambda_k-x-2jy =(n-j+k)\rho-(n-j-k+\delta)\rho^{-1}.\end{align} $$

According to the definition, the left-hand side of (2.1) can be written as

$$ \begin{align*} (\lambda_k-x-2jy)u_k(j)=\mathrm{P}-\mathrm{Q}, \end{align*} $$

where

$$ \begin{align*}\mathrm{P}&=(n-j+k)\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j+1},\\ \mathrm{Q}&=(n-j-k+\delta)\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j-1}. \end{align*} $$

Consequently, the equality (2.1) can be restated as

(2.3) $$ \begin{align}\mathrm{P}-ju_k(j-1)= \mathrm{Q}+(\delta+2n-j)u_k(j+1).\end{align} $$

The two sums on the left can be combined as

$$ \begin{align*} \mathrm{P} -ju_k(j-1) &=\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j+1} \\ &\quad \times\bigg\{(n-j+k)+\frac{(j-\ell)(1+\delta+2n-j)}{1+\delta+n-j-k+\ell}\bigg\}\\ &=\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j+1} \frac{(n+k-\ell)(1+\delta+n-k)}{1+\delta+n-j-k+\ell}\\ &=(1+\delta+n-k)\sum_{\ell=0}^j(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell-1}\rho^{2\ell-j+1}, \end{align*} $$

while, similarly, for the two sums on the right,

$$ \begin{align*}\mathrm{Q} +(\delta+2n-j)u_k(j+1) &=\sum_{\ell=0}^{j+1}(-1)^{j+\ell} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j-1}\\ &\quad \times\bigg\{(n-j-k+\delta)-\frac{(j+1)(\delta+n-j-k+\ell)}{1+j-\ell}\bigg\}\\ &=\sum_{\ell=0}^{j+1}(-1)^{j+\ell-1} \binom{j}{\ell}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j-1} \frac{\ell(1+\delta+n-k)}{1+j-\ell}\\ &=(1+\delta+n-k)\sum_{\ell=0}^{j+1}(-1)^{j+\ell-1} \binom{j}{\ell-1}\binom{\delta+2n-j}{n+k-\ell}\rho^{2\ell-j-1}. \end{align*} $$

Shifting forward the summation index $\ell \to 1+\ell $ for the last sum, we see that the above two expressions for both sides of equation (2.3) coincide. This confirms item (a).

Likewise, (b) will be confirmed if we can show that $\textbf {v}_k$ is the right eigenvector corresponding to $\lambda _k$ . This can be done by showing, for each pair $(k,i)$ , that

$$ \begin{align*}\lambda_kv_k(i) &=\sum_{j=0}^m\sigma_{i,j}(x,y)v_k(j)\\ &=\sigma_{i,i-1}(x,y)v_k(i-1) +\sigma_{i,i}(x,y)v_k(i) +\sigma_{i,i+1}(x,y)v_k(i+1), \end{align*} $$

which can be, equivalently, restated as

(2.4) $$ \begin{align} (\lambda_k-x-2iy)v_k(i) =(m-i+1)v_k(i-1) +(i+1)v_k(i+1).\end{align} $$

Keeping in mind (2.2), we can express the left-hand side of (2.4) as

$$ \begin{align*} (\lambda_k-x-2iy)v_k(i)=\mathcal{P}-\mathcal{Q}, \end{align*} $$

where

$$ \begin{align*}\mathcal{P}&=(n-i+k)\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i+1},\\ \mathcal{Q}&=(n-i-k+\delta)\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i-1}. \end{align*} $$

Therefore, (2.4) can be reformulated as

$$ \begin{align*} \mathcal{P}-(\delta+2n-i+1)v_k(i-1)=\mathcal{Q}+(i+1)v_k(i+1). \end{align*} $$

According to the definitions, we first simplify the left-hand side of this equation,

$$ \begin{align*}\mathcal{P}&-(\delta+2n-i+1)v_k(i-1) \\ &=\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i+1} \times\bigg\{(n-i+k)-\frac{(\delta+2n-i+1)(i-\ell)}{\delta+n-k-i+\ell+1}\bigg\}\\ &=\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i+1} \frac{(n+k-\ell)(1+\delta+n-k)}{\delta+n-k-i+\ell+1}\\ &=(n+k)\sum_{\ell=0}^i(-1)^{i+\ell} \binom{n+k-1}{\ell}\binom{1+\delta+n-k}{i-\ell}\rho^{2\ell-i+1}, \end{align*} $$

and then the right-hand side of the same equation,

$$ \begin{align*}\mathcal{Q} & +(i+1)v_k(i+1) \\ &=\sum_{\ell=0}^{i+1}(-1)^{i+\ell} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i-1} \times\bigg\{(n-i-k+\delta)-\frac{(i+1)(\delta+n-i-k+\ell)}{1+i-\ell}\bigg\}\\ &=\sum_{\ell=0}^{i+1}(-1)^{i+\ell-1} \binom{n+k}{\ell}\binom{\delta+n-k}{i-\ell}\rho^{2\ell-i-1} \frac{\ell(1+\delta+n-k)}{1+i-\ell}\\ &=(n+k)\sum_{\ell=0}^{i+1}(-1)^{i+\ell-1} \binom{n+k-1}{\ell-1}\binom{1+\delta+n-k}{1+i-\ell}\rho^{2\ell-i-1}. \end{align*} $$

The last two expressions become identical when the replacement $\ell \to 1+\ell $ is made in the latter one. This shows that $\textbf {v}_k$ is indeed the right eigenvector of the matrix $M_{\delta +2n}(x,y)$ corresponding to $\lambda _k$ .

3 Orthogonality relations

For two vectors $\textbf {u}$ and $\textbf {v}$ of the same dimension, denote their usual scalar product by $\langle {\textbf {u},\textbf {v}}\rangle $ . The next theorem highlights orthogonality relations between the left and right eigenvectors of $ \Omega _{m}(x,y)$ .

Theorem 3.1. Assume $\textbf {u}_i$ and $\textbf {v}_j$ as in Theorem 2.1. Then the following orthogonality relations hold for all i and j subject to $-n\le i,j\le n+\delta $ .

$$ \begin{align*}\langle{\textbf{u}_i,\textbf{v}_j}\rangle =2^m\frac{(1+y\rho)^m}{\rho^{2m-2n-2k}}\chi(i=j),\end{align*} $$

where $\chi $ is the logical function defined by $\chi (\text {true})=1$ and $\chi (\text {false})=0$ .

Proof. To prove these orthogonality relations, write the scalar product as the triple sum

(3.1) $$ \begin{align} \langle{\textbf{u}_i,\textbf{v}_j}\rangle &=\sum_{k=0}^{m}u_i(k)v_j(k) \nonumber\\ &=\sum_{k=0}^{\delta+2n}\sum_{\imath=0}^k(-1)^{k+\imath} \binom{k}{\imath}\binom{\delta+2n-k}{n+i-\imath}\rho^{2\imath-k} \sum_{\jmath=0}^k(-1)^{k+\jmath} \binom{n+j}{\jmath}\binom{\delta+n-j}{k-\jmath}\rho^{2\jmath-k}.\ \end{align} $$

Observing that

$$ \begin{align*}\textbf{u}_i\Omega_m(x,y)\textbf{v}_j &=\langle{\textbf{u}_i\Omega_m(x,y),\textbf{v}_j}\rangle=\lambda_i\langle{\textbf{u}_i,\textbf{v}_j}\rangle\\ &=\langle{\textbf{u}_i,\Omega_m(x,y)\textbf{v}_j}\rangle=\lambda_j\langle{\textbf{u}_i,\textbf{v}_j}\rangle, \end{align*} $$

immediately, we have

$$ \begin{align*} \langle{\textbf{u}_i,\textbf{v}_j}\rangle=0 \quad\text{when } i\not=j \quad\text{for } \lambda_i\not=\lambda_j. \end{align*} $$

When $i=j=\ell $ , the scalar product (3.1) can be reformulated, by first making the replacement $\jmath \to k-\jmath $ and then interchanging the order of the triple sum, as

$$ \begin{align*}\langle{\textbf{u}_\ell,\textbf{v}_\ell}\rangle &=\sum_{k=0}^{\delta+2n}\sum_{\imath=0}^k(-1)^{k+\imath} \binom{k}{\imath}\binom{\delta+2n-k}{n+\ell-\imath}\rho^{2\imath-k} \sum_{\jmath=0}^k(-1)^{\jmath} \binom{n+\ell}{k-\jmath}\binom{\delta+n-\ell}{\jmath}\rho^{k-2\jmath}\\ &=\sum_{\imath,\jmath=0}^{\delta+2n}(-1)^{\imath+\jmath} \binom{\delta+n-\ell}{\jmath}\rho^{2\imath-2\jmath} \sum_{k=\max\{\imath,\jmath\}}^{\delta+2n}(-1)^k \binom{k}{\imath}\binom{\delta+2n-k}{n+\ell-\imath} \binom{n+\ell}{k-\jmath}. \end{align*} $$

The inner sum with respect to k can be reformulated under $k\to \kappa +\jmath $ and then evaluated in closed form as

$$ \begin{align*} \sum_{\kappa=0}^{\delta+2n-\jmath}(-1)^{\kappa+\jmath} \binom{n+\ell}{\jmath} \binom{\kappa+\jmath}{\imath} \binom{\delta+2n-\kappa-\jmath}{n+\ell-\imath} =(-1)^{\jmath} \binom{n+\ell}{\imath}, \end{align*} $$

since the last sum results substantially, apart from an alternating sign, in the finite differences of order $n+\ell $ for a polynomial of the same degree $n+\ell $ .

Therefore, the triple sum is reduced to a double one and can be evaluated further by the binomial theorem: that is,

$$ \begin{align*}\langle{\textbf{u}_\ell,\textbf{v}_\ell}\rangle &=\sum_{\imath=0}^{\delta+2n}\binom{n+\ell}{\imath}\rho^{2\imath} \sum_{\jmath=0}^{\delta+2n}\binom{\delta+n-\ell}{\jmath}\rho^{-2\jmath} =(1+\rho^2)^{n+\ell}(1+\rho^{-2})^{\delta+n-\ell}. \end{align*} $$

This is equivalent to the expression

$$ \begin{align*} \langle{\textbf{u}_\ell,\textbf{v}_\ell}\rangle =\frac{(1+\rho^2)^m}{\rho^{2\delta+2n-2\ell}} = \frac{(2+2y\rho)^m}{\rho^{2m-2n-2\ell}}.\\[-42.5pt] \end{align*} $$

4 Two determinantal evaluations

Finally, we prove the two determinantal identities as in the following theorem.

Theorem 4.1. Letting $\textbf {u}_i$ and $\textbf {v}_j$ be as in Theorem 2.1, define the matrices

$$ \begin{align*}U_m=[u_{k-n}(j)]_{0\le k,j\le m} \quad\text{and}\quad V_m=[v_{k-n}(i)]_{0\le i,k\le m}.\end{align*} $$

Their determinants are evaluated in closed form as

$$ \begin{align*}\det U_m=\det V_m =(4+4y^2)^{{m(m+1)}/{4}}.\end{align*} $$

Proof. We first evaluate the determinant $\det U_m$ . By making use of (2.2), we rewrite the three-term relation (2.1) as

(4.1) $$ \begin{align} \frac{(2k-m)(\rho+\rho^{-1})}{2(m-j)}u_{k-n}(j) &=u_{k-n}(j+1)+\frac{j}{m-j}u_{k-n}(j-1) \nonumber\\ &\quad +\frac{(2j-m)(\rho-\rho^{-1})}{2(m-j)}u_{k-n}(j). \end{align} $$

For the determinant of the matrix

$$ \begin{align*} \det U_m=\det_{0\le k\le m}[\textbf{u}_{k-n}] =\det_{0\le j, k\le m}[u_{k-n}(j)], \end{align*} $$

perform the following three operations:

  • add ${j}/{(m-j)}$ times the $(j-1)$ th row to the $(j+1)$ th row;

  • add ${(2j-m)(\rho -\rho ^{-1})}/{(2m-2j)}$ times the jth row to the $(j+1)$ th row; and

  • after the above two operations, the entry at position $(j+1,k)$ in the $(j+1)$ th row becomes $({(2k-m)(\rho +\rho ^{-1})}/{(2m-2j)})u_{k-n}(j)$ , in view of (4.1).

Repeating this operation upwards for all the rows except the first one and then pulling out the common factors in rows, we get the expression (with k indicating the kth column)

$$ \begin{align*} \det U_n=\prod_{j=0}^{m-1}\frac{(\rho+\rho^{-1})}{2(m-j)} \times\det_{0\le k\le m} \left[ \begin{array}{cl}&u_{k-n}(0)\\ (2k-m)&u_{k-n}(0)\\ (2k-m)&u_{k-n}(1)\\ (2k-m)&u_{k-n}(2)\\ \cdots&\cdots~\cdots\\ (2k-m)&u_{k-n}(m-1)\end{array}\right]. \end{align*} $$

By carrying out the same operations in the above matrix (except for the first two rows), we can further reduce the determinant: that is,

$$ \begin{align*} \det U_m=\prod_{i=1}^2\prod_{j=0}^{m-i}\frac{(\rho+\rho^{-1})}{2(m-j)} \times\det_{0\le k\le m} \left[ \begin{array}{cl}&u_{k-n}(0)\\ (2k-m)~&u_{k-n}(0)\\ (2k-m)^2&u_{k-n}(0)\\ (2k-m)^2&u_{k-n}(1)\\ \cdots&\cdots~\cdots\\ (2k-m)^2&u_{k-n}(m-2)\end{array}\right]. \end{align*} $$

Iterating the same procedure m times and extracting the common factors $ u_{k-n}(0)$ in the columns of the resulting matrix, we derive the simplified expression

$$ \begin{align*} \det U_n=\prod_{i=1}^m\prod_{j=0}^{m-i}\frac{(\rho+\rho^{-1})}{2(m-j)} \times\det_{0\le j,k \le m}[(2k-m)^j] \prod_{k=0}^mu_{k-n}(0). \end{align*} $$

Keeping in mind that $u_{k-n}(0)=\binom {m}{k}$ and the determinant in the middle is of Vandermonde type, we can evaluate separately

$$ \begin{align*} \prod_{i=1}^m\prod_{j=0}^{m-i} \frac{(\rho+\rho^{-1})}{2(m-j)} & =\prod_{i=1}^m\frac{(i-1)!}{m!} \bigg(\frac{\rho+\rho^{-1}}{2}\bigg)^{m-i+1} =\bigg(\frac{\rho+\rho^{-1}}{2}\bigg)^{\binom{m+1}2} \prod_{i=1}^m\frac{(i-1)!}{m!},\\[3pt] \det_{0\le j,k \le m}[(2k-m)^k] & =\prod_{0\le j<k\le m}(2k-2j) =2^{\binom{m+1}2}\prod_{k=1}^m(k!),\\[3pt] \prod_{k=0}^mu_{k-n}(0) & =\prod_{k=0}^m\binom{m}{k}=\prod_{k=1}^m\frac{m!}{k!(k-1)!}. \end{align*} $$

Multiplying these together, we find the closed formula

$$ \begin{align*} \det U_m =(\rho+\rho^{-1})^{\binom{m+1}2} =(4+4y^2)^{m(m+1)/4}. \end{align*} $$

Finally, to evaluate the other determinant $\det V_m$ , rewrite, analogously, the three-term relation (2.4) as

(4.2) $$ \begin{align} \frac{(2k-m)(\rho+\rho^{-1})}{2(i+1)}v_{k-n}(i) &=v_{k-n}(i+1)+\frac{m-i+1}{i+1}v_{k-n}(i-1)\nonumber\\ &\quad +\frac{(2i-m)(\rho-\rho^{-1})}{2(i+1)}v_{k-n}(i). \end{align} $$

Similarly, for the determinant

$$ \begin{align*} \det V_n=\det_{0\le k\le n}[\textbf{v}_k] =\det_{0\le i, k\le n}[v_k(i)], \end{align*} $$

make the following three operations:

  • add ${(m-i+1)}{/(i+1)}$ times the $(i-1)$ th row to the $(i+1)$ th row;

  • add ${(2i-m)(\rho -\rho ^{-1})}/{(2i+2)}$ times the ith row to the $(i+1)$ th row; and

  • after the above two operations, the entry at position $(i+1,k)$ in the $(i+1)$ th row becomes $({(2k-m)(\rho +\rho ^{-1})}/{(2i+2)})v_{k-n}(i)$ , taking into account (4.2).

Repeating this operation upwards for all the rows except the first one and then pulling out the common factors in rows, we get the expression (with k indicating the kth column)

$$ \begin{align*} \det V_m=\prod_{i=0}^{m-1} \frac{\rho+\rho^{-1}}{2(i+1)} \times\det_{0\le k\le n} \left[ \begin{array}{cl}&v_{k-n}(0)\\ (2k-m)&v_{k-n}(0)\\ (2k-m)&v_{k-n}(1)\\ (2k-m)&v_{k-n}(2)\\ \cdots&\cdots~\cdots\\ (2k-m)&v_{k-n}(n-1)\end{array}\right]. \end{align*} $$

By carrying out the same operations in the above matrix (except for the first two rows), we can reduce this further: that is,

$$ \begin{align*} \det V_m=\prod_{j=1}^2\prod_{i=0}^{m-j} \frac{\rho+\rho^{-1}}{2(i+1)} \times\det_{0\le k\le n} \left[ \begin{array}{cl}&v_k(0)\\ (2k-m)~&v_{k-n}(0)\\ (2k-m)^2&v_{k-n}(0)\\ (2k-m)^2&v_{k-n}(1)\\ \cdots&\cdots~\cdots\\ (2k-m)^2&v_{k-n}(m-2)\end{array}\right]. \end{align*} $$

Iterating the same procedure m times and extracting the common factors $ v_k(0)$ in the columns of the resulting matrix, we find the following simplified expression.

$$ \begin{align*} \det V_n=\prod_{j=1}^m\prod_{i=0}^{m-j} \frac{\rho+\rho^{-1}}{2(i+1)} \times\det_{0\le i,k\le n} [(2k-m)^i] \prod_{k=0}^mv_{k-n}(0). \end{align*} $$

Keeping in mind that $v_{k-n}(0)\equiv 1$ and then evaluating the product

$$ \begin{align*}\prod_{j=1}^m\prod_{i=0}^{m-j} \frac{\rho+\rho^{-1}}{2(i+1)} =\prod_{j=1}^m\frac{1}{(m-j+1)!} \bigg(\frac{\rho+\rho^{-1}}{2}\bigg)^{m-j+1} =\bigg(\frac{\rho+\rho^{-1}}{2}\bigg)^{\binom{m+1}{2}} \prod_{j=1}^m\frac{1}{j!}, \end{align*} $$

we derive, after substitution, the second determinantal evaluation

$$ \begin{align*} \det V_m =(\rho+\rho^{-1})^{\binom{m+1}{2}} =(4+4y^2)^{{m(m+1)}/{4}}.\\[-36.1pt] \end{align*} $$

References

Aitken, A. C., Determinants and Matrices (Oliver and Boyd, London, 1951).Google Scholar
Askey, R., ‘Evaluation of Sylvester type determinants using orthogonal polynomials’, in: Advances in Analysis, Proceedings of the Fourth ISAAC Congress (eds. Begehr, H. G. W., Gilbert, R. P., Muldoon, M. E. and Wong, M.-W.) (World Scientific, Singapore, 2005), 116.Google Scholar
Bevilacqua, R. and Bozzo, E., ‘The Sylvester–Kac matrix space’, Linear Algebra Appl. 430(11/12) (2009), 31313138.CrossRefGoogle Scholar
Boros, T. and Rózsa, P., ‘An explicit formula for singular values of the Sylvester–Kac matrix’, Linear Algebra Appl. 421(2/3) (2007), 407416.CrossRefGoogle Scholar
Chu, W., ‘Fibonacci polynomials and Sylvester determinant of tridiagonal matrix’, Appl. Math. Comput. 216(3) (2010), 10181023.Google Scholar
Chu, W., ‘Spectrum and eigenvectors for a class of tridiagonal matrices’, Linear Algebra Appl. 582(1) (2019), 499516.CrossRefGoogle Scholar
Chu, W. and Wang, X. Y., ‘Eigenvectors of tridiagonal matrices of Sylvester type’, Calcolo 45(4) (2008), 217233.CrossRefGoogle Scholar
Clement, P. A., ‘A class of triple-diagonal matrices for test purposes’, SIAM Rev. 1(1) (1959), 5052.CrossRefGoogle Scholar
da Fonseca, C. M., Mazilu, D. A., Mazilu, I. and Williams, H. T., ‘The eigenpairs of a Sylvester–Kac type matrix associated with a simple model for one-dimensional deposition and evaporation’, Appl. Math. Lett. 26(12) (2013), 12061211.CrossRefGoogle Scholar
Fonseca, C. M. and Kılıç, E., ‘A new type of Sylvester–Kac matrix and its spectrum’, Linear Multilinear Algebra 69(6) (2021), 10721082.Google Scholar
Holtz, O., ‘Evaluation of Sylvester type determinants using block-triangularization’, in: Advances in Analysis, Proceedings of the Fourth ISAAC Congress (eds. Begehr, H. G. W., Gilbert, R. P., Muldoon, M. E. and Wong, M.-W.) (World Scientific, Singapore, 2005), 395405.Google Scholar
Hu, Z. G., ‘Eigenvalues and eigenvectors of a class of irreducible tridiagonal matrices’, Linear Algebra Appl. 619 (2021), 328337.CrossRefGoogle Scholar
Ikramov, Kh. D., ‘On a remarkable property of a matrix of Mark Kac’, Math. Notes 72(3/4) (2002), 325330.CrossRefGoogle Scholar
Kac, M., ‘Random walk and the theory of Brownian motion’, Amer. Math. Monthly 54(7) (1947), 369391.CrossRefGoogle Scholar
Kılıç, E., ‘Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra’, Int. J. Nonlinear Sci. Numer. Simul. 14 (2013), 261266.CrossRefGoogle Scholar
Kılıç, E. and Arikan, T., ‘Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix’, Turkish J. Math. 40 (2016), 8089.CrossRefGoogle Scholar
Muir, T., The Theory of Determinants in the Historical Order of Development. Vol. II (Dover Publications Inc., New York, 1960).Google Scholar
Nomura, K. and Terwilliger, P., ‘Krawtchouk polynomials, the Lie algebra sl(2), and Leonard pairs’, Linear Algebra Appl. 437(1) (2012), 345375.CrossRefGoogle Scholar
Sylvester, J. J., ‘Théorème sur les déterminants de M. Sylvester’, Nouvelles Annales de Mathématiques 13 (1854), 305; Reprinted in Collected Mathematical Papers, Vol. II, 20.Google Scholar
Taussky, O. and Todd, J., ‘Another look at a matrix of Mark Kac’, Linear Algebra Appl. 150 (1991), 341360.CrossRefGoogle Scholar
Vein, R. and Dale, P., Determinants and Their Applications in Mathematical Physics (Springer, New York, 1999).Google Scholar