Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T15:04:20.961Z Has data issue: false hasContentIssue false

JOINT UNIVERSALITY OF HURWITZ ZETA-FUNCTIONS

Published online by Cambridge University Press:  09 July 2012

ANTANAS LAURINČIKAS*
Affiliation:
Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that Hurwitz zeta-functions with algebraically independent parameters over the field of rational numbers are universal in the sense that their shifts approximate simultaneously any collection of analytic functions. In this paper we introduce some classes of universal composite functions of a collection of Hurwitz zeta-functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Bagchi, B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, PhD Thesis, Indian Statistical Institute, Calcutta, 1981.Google Scholar
[2]Bagchi, B., ‘A joint universality theorem for Dirichlet L-functions’, Math. Z. 181 (1982), 319334.CrossRefGoogle Scholar
[3]Billingsley, P., Convergence of Probability Measures (Wiley, New York, 1968).Google Scholar
[4]Bitar, K. M., Khuri, N. N. and Ren, H. C., ‘Path integrals and Voronin’s theorem on the universality of the Riemann zeta-function’, Ann. Phys. 211 (1991), 172196.CrossRefGoogle Scholar
[5]Cassels, J. W. S., ‘Footnote to a note of Davenport and Heilbronn’, J. Lond. Math. Soc. 36 (1961), 177184.CrossRefGoogle Scholar
[6]Conway, J. B., Functions of One Complex Variable (Springer, Berlin, 1973).CrossRefGoogle Scholar
[7]Gonek, S. M., Analytic Properties of Zeta and L-Functions, PhD Thesis, University of Michigan, 1979.Google Scholar
[8]Grosse-Erdmann, K.-G., ‘Universal families and hypercyclic operators’, Bull. Amer. Math. Soc. 36 (1999), 345381.CrossRefGoogle Scholar
[9]Karatsuba, A. A. and Voronin, S. M., The Riemann Zeta-Function (de Gruyter, New York, 1992).CrossRefGoogle Scholar
[10]Laurinčikas, A., Limit Theorems for the Riemann Zeta-Function (Kluwer Academic Publishers, Dordrecht, 1996).CrossRefGoogle Scholar
[11]Laurinčikas, A., ‘The universality of zeta-functions’, Acta Appl. Math. 78 (2003), 251271.CrossRefGoogle Scholar
[12]Laurinčikas, A., ‘The joint universality of Hurwitz zeta-functions’, Šiauliai Math. Semin. 3(11) (2008), 169187.Google Scholar
[13]Laurinčikas, A., ‘Universality of the Riemann zeta-function’, J. Number Theory 130 (2010), 23232331.CrossRefGoogle Scholar
[14]Laurinčikas, A. and Garunkštis, R., The Lerch Zeta-Function (Kluwer Academic Publishers, Dordrecht, 2002).Google Scholar
[15]Matsumoto, K., ‘Some problems on mean values and the universality of zeta and multiple zeta-functions’, in: Analytic and Probab. Methods in Number Theory, Proc. 3rd Intern. Conf. (eds. Dubickas, A.et al.) (TEV, Vilnius, 2002), pp. 195199.Google Scholar
[16]Matsumoto, K., ‘Probabilistic value-distribution theory of zeta-functions’, Sugaku Expositions 17 (2004), 5171.Google Scholar
[17]Mergelyan, S. N., ‘Uniform approximations to functions of complex variable’, in: Uspekhi Mat. Nauk, 7. 1952, pp. 31122 (in Russian) ≡ Amer. Math. Soc. Trans. 101 (1954), 99.Google Scholar
[18]Nakamura, T., ‘The existence and nonexistence of joint t-universality for Lerch zeta-function’, J. Number Theory 125(2) (2007), 424441.CrossRefGoogle Scholar
[19]Steuding, J., Value Distribution of L-Functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).Google Scholar
[20]Voronin, S. M., ‘Theorem on the “universality” of the Riemann zeta-function’, Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975), 475486 (in Russian) ≡ Math. USSR Izv. 9 (1975), 443–453.Google Scholar
[21]Voronin, S. M., ‘On the functional independence of Dirichlet L-functions’, Acta Arith. 27 (1975), 493503 (in Russian).Google Scholar
[22]Walsh, J. L., ‘Interpolation and approximation by rational functions in the complex domain’, Amer. Math. Soc. Colloq. Publ. 20 (1960).Google Scholar