Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T22:25:25.906Z Has data issue: false hasContentIssue false

ITÔ’S THEOREM ON GROUPS WITH TWO CLASS SIZES REVISITED

Published online by Cambridge University Press:  19 October 2011

ELENA ALEMANY*
Affiliation:
Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain (email: [email protected])
ANTONIO BELTRÁN
Affiliation:
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain (email: [email protected])
MARÍA JOSÉ FELIPE
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite p-solvable group. We prove that if G has exactly two conjugacy class sizes of p′-elements of prime power order, say 1 and m, then m=paqb, for two distinct primes p and q, and G either has an abelian p-complement or G=PQ×A, with P and Q a Sylow p-subgroup and a Sylow q-subgroup of G, respectively, and A is abelian. In particular, we provide a new extension of Itô’s theorem on groups having exactly two class sizes for elements of prime power order.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

This research is supported by the Spanish Government, Proyecto MTM2010-19938-C03-02 and the second and third authors are supported by the Valencian Government, Proyecto PROMETEO/2011/30. The second author is also supported by grant Fundació Caixa-Castelló P11B2010-47.

References

[1]Baer, R., ‘Group elements of prime power index’, Trans. Amer. Math. Soc. 75 (1953), 2047.CrossRefGoogle Scholar
[2]Beltrán, A. and Felipe, M. J., ‘Finite groups with two p-regular conjugacy class lengths’, Bull. Aust. Math. Soc. 67 (2003), 163169.CrossRefGoogle Scholar
[3]Beltrán, A. and Felipe, M. J., ‘Prime powers as conjugacy class lengths of π-elements’, Bull. Aust. Math. Soc. 69 (2004), 317325.CrossRefGoogle Scholar
[4]Camina, A. R., ‘Finite groups of conjugate rank 2’, Nagoya Math. J. 53 (1974), 4757.CrossRefGoogle Scholar
[5]Camina, A. R. and Camina, R. D., ‘Implications of conjugacy class size’, J. Group Theory 1 (1998), 257269.CrossRefGoogle Scholar
[6]Huppert, B., Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, 25 (Walter De Gruyter, New York, 1998).CrossRefGoogle Scholar
[7]Itô, N., ‘On finite groups with given conjugate type I’, Nagoya Math. J. 6 (1953), 1728.CrossRefGoogle Scholar
[8]Kurzweil, K. and Stellmacher, B., The Theory of Finite Groups. An Introduction (Springer, New York, 2004).CrossRefGoogle Scholar
[9]Shirong, L., ‘Finite groups with exactly two class lengths of elements of prime power order’, Arch. Math. (Basel) 67 (1996), 100105.CrossRefGoogle Scholar
[10]Zhao, X. and Guo, X., ‘On conjugacy class sizes of the p′-elements with prime power order’, Algebra Colloq. 16(4) (2009), 541548.CrossRefGoogle Scholar