Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T03:45:48.935Z Has data issue: false hasContentIssue false

Isotopes of nearlattices

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Cornish, William H., “The kernels of skeletal congruences on a distributive lattice”, Math. Nachr. 84 (1978), 219228.CrossRefGoogle Scholar
[2]Cornish, William H. and Noor, A.S.A., “Bands and modular lattices”, Math. Sem. Notes Kobe Univ. 7 (1979), 309326.Google Scholar
[3]Goetz, Abraham, “On various Boolean structures in a given Boolean algebra”, Publ. Math. Debrecen 18 (1971), 103107.CrossRefGoogle Scholar
[4]Jakubík, J., “Pairs of lattices with common congruence relations”, Lattice theory, 171183 (Colloquia Mathematica Societatis János Bolyai, 14. North-Holland, Amsterdam, Oxford, New York, 1976).Google Scholar
[5]Янубнк, Я., Нолибиар, М. [Jakubík, J., Kolibiar, M.], “О некторых свойтвах пар струнтур” [On some properties of a pair of lattices], Czechoslovak Math. J. 4 (1954), 127.Google ScholarPubMed
[6]Janowitz, M.F., “A note on normal ideals”, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 19.Google Scholar
[7]Kiss, S.A., “Semilattices and a ternary operation in modular lattices”, Bull. Amer. Math. Soc. 54 (1948), 11761179.CrossRefGoogle Scholar
[8]кοлибиар, Милан [Kolibiar, Milan], “Тернарая ο⊓ераЦия В СТрУкТраХ” [A ternary operation in lattices], Czechoslovak Math. J. 6 (1956), 318329.Google Scholar
[9]Nieminen, Juhani, “The lattice of translations on a lattice”, Acta Sci. Math. 39 (1977), 109113.Google Scholar
[10]Sholander, Marlow, “Medians, lattices, and trees”, Proc. Amer. Math. Soc. 5 (1954), 808812.CrossRefGoogle Scholar