Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:13:15.975Z Has data issue: false hasContentIssue false

Integrable double Kerr-Schild spaces

Published online by Cambridge University Press:  17 April 2009

Mark S. Hickman
Affiliation:
Department of Mathematics, Monash University, Clayton, Vic. 3168, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Newman, E. T. and Penrose, R., “An approach to gravitational radiation by the method of spin coefficients”, J. Math. Phys. 3 (1962), 556578.CrossRefGoogle Scholar
[2]Penrose, R., Structure of spacetime, Battelle Rencontre, (1967) Lectures in Mathematics and Physics, ed. DeWitt, C. M. and Wheeler, J. A., Benjamin, New York, 1968.Google Scholar
[3]Plebañski, J. F. and Robinson, I., “Left degenerate vacuum metrics”, Phys. Rev. Lett. 37 (1976), 493495.CrossRefGoogle Scholar
[4]Plebañski, J. F. and Robinson, I., The complex vacuum metrics with minimally degenerate conformal curvature (Asymptotic structure of spacetime, ed. Esposito, E. P. and Witten, L., Plenum Press, New York, 1977).Google Scholar
[5]Cohen, J. M. and Kegeles, L. S., “Electromagnetic fields in curved spaces: A constructive procedure”, Phys. Lett. A47 (1974), 261262.CrossRefGoogle Scholar
[6]Kegeles, L. S. and Cohen, J. M., “Constructive procedure for perturbations of spacetime”, Phys. Rev. D19 (1979), 16411664.Google Scholar
[7]Cohen, J. M. and Kegeles, L. S., “Spacetime perturbations”, Phys. Lett. A54 (1975), 57.CrossRefGoogle Scholar