Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T15:44:14.403Z Has data issue: false hasContentIssue false

IDEAL CHAINS IN RESIDUALLY FINITE DEDEKIND DOMAINS

Published online by Cambridge University Press:  28 November 2018

YU-JIE WANG
Affiliation:
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China email [email protected]
YI-JING HU
Affiliation:
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China email [email protected]
CHUN-GANG JI*
Affiliation:
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\mathfrak{D}$ be a residually finite Dedekind domain and let $\mathfrak{n}$ be a nonzero ideal of $\mathfrak{D}$. We consider counting problems for the ideal chains in $\mathfrak{D}/\mathfrak{n}$. By using the Cauchy–Frobenius–Burnside lemma, we also obtain some further extensions of Menon’s identity.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

Footnotes

This work was partially supported by the Grant No. 11471162 from NNSF of China and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133207110012).

References

Li, Y. and Kim, D., ‘A Menon-type identity with many tuples of group of units in residually finite Dedekind domains’, J. Number Theory 175 (2017), 4250.Google Scholar
Li, Y. and Kim, D., ‘Menon-type identities derived from actions of subgroups of general linear groups’, J. Number Theory 179 (2017), 97112.Google Scholar
Menon, P. K., ‘On the sum ∑(a - 1, n)[(a, n) = 1]’, J. Indian Math. Soc. 29 (1965), 155163.Google Scholar
Miguel, C., ‘Menon’s identity in residually finite Dedekind domains’, J. Number Theory 137 (2014), 179185.Google Scholar
Miguel, C., ‘A Menon-type identity in residually finite Dedekind domains’, J. Number Theory 164 (2016), 4351.Google Scholar
Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers (Polish Science Publishers, Warsaw, 1974).Google Scholar
Neumann, P., ‘A lemma that is not Burnside’s’, Math. Sci. 4 (1979), 133141.Google Scholar
Sury, B., ‘Some number-theoretic identities from group actions’, Rend. Circ. Mat. Palermo 58 (2009), 99108.Google Scholar
Tǎrnǎuceanu, M., ‘A generalization of Menon’s identity’, J. Number Theory 132 (2012), 25682573.Google Scholar
Zhang, X. and Ji, C. G., ‘Sums of generators of ideals in residue class ring’, J. Number Theory 174 (2017), 1425.Google Scholar