No CrossRef data available.
Article contents
Homomorphisms on an orthogonally decomposable Hilbert space V
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a triple (M, H,ξ0) of a von Neumann algebra M on a Hilbert space H with a cyclic and separating vector ξ0, every order isormorphism ø, of H such that øξ0 = ξ0 is an orthogonal decomposition isomorphism if and only if ξ0 is a trace vector.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 40 , Issue 2 , October 1989 , pp. 333 - 336
- Copyright
- Copyright © Australian Mathematical Society 1989
References
[1]Connes, A., ‘Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann’, Ann. Inst. Fourier, (Grenoble) 24 (1974), 121–155.CrossRefGoogle Scholar
[2]Dang, T.B. and Yamamuro, S., ‘On homomorphisms of an orthogonally decomposable Hilbert space’, J. Funct. Anal. 68 (1986), 366–373.CrossRefGoogle Scholar
[3]Kadison, R.V., ‘Isometries of operator algebras’, Ann. Math. 54 (1951), 325–358.CrossRefGoogle Scholar
[4]Kadison, R.V., ‘A generalized Schwarz inequality and algebraic invariants for operator algebras’, Ann. Math. 56 (1952), 494–503.CrossRefGoogle Scholar
[5]Stratilia, S. and Zsido, L., Lectures on von Neumann Algebra, (Abacus Press, 1979).Google Scholar
[6]Yamamuro, S., ‘Absolute values in orthogonally decomposable spaces’, Bull. Austral. Math. Soc. 31 (1985), 215–233.CrossRefGoogle Scholar
You have
Access