Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T15:14:38.329Z Has data issue: false hasContentIssue false

Homomorphisms on an orthogonally decomposable Hilbert space V

Published online by Cambridge University Press:  17 April 2009

Sadayuki Yamamuro
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra ACT 2601, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a triple (M, H0) of a von Neumann algebra M on a Hilbert space H with a cyclic and separating vector ξ0, every order isormorphism ø, of H such that øξ0 = ξ0 is an orthogonal decomposition isomorphism if and only if ξ0 is a trace vector.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Connes, A., ‘Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann’, Ann. Inst. Fourier, (Grenoble) 24 (1974), 121155.CrossRefGoogle Scholar
[2]Dang, T.B. and Yamamuro, S., ‘On homomorphisms of an orthogonally decomposable Hilbert space’, J. Funct. Anal. 68 (1986), 366373.CrossRefGoogle Scholar
[3]Kadison, R.V., ‘Isometries of operator algebras’, Ann. Math. 54 (1951), 325358.CrossRefGoogle Scholar
[4]Kadison, R.V., ‘A generalized Schwarz inequality and algebraic invariants for operator algebras’, Ann. Math. 56 (1952), 494503.CrossRefGoogle Scholar
[5]Stratilia, S. and Zsido, L., Lectures on von Neumann Algebra, (Abacus Press, 1979).Google Scholar
[6]Yamamuro, S., ‘Absolute values in orthogonally decomposable spaces’, Bull. Austral. Math. Soc. 31 (1985), 215233.CrossRefGoogle Scholar