Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T20:23:55.718Z Has data issue: false hasContentIssue false

HOMOGENEOUS PBW DEFORMATION FOR ARTIN–SCHELTER REGULAR ALGEBRAS

Published online by Cambridge University Press:  12 September 2014

Y. SHEN
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China email [email protected]
G.-S. ZHOU*
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China email [email protected]
D.-M. LU
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a method named homogeneous PBW deformation that preserves the regularity and some other homological properties for multigraded algebras. The method is used to produce Artin–Schelter regular algebras without the hypothesis on grading.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Artin, M. and Schelter, W., ‘Graded algebras of global dimension 3’, Adv. Math. 66(2) (1987), 171216.CrossRefGoogle Scholar
Artin, M., Tate, J. and Van den Bergh, M., ‘Some algebras associated to automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. I, Progress in Mathematics, 86 (Birkhäuser, Boston, MA, 1990), 3385.Google Scholar
Artin, M., Tate, J. and Van den Bergh, M., ‘Modules over regular algebras of dimension 3’, Invent. Math. 106(2) (1991), 335388.Google Scholar
Artin, M. and Zhang, J. J., ‘Noncommutative projective schemes’, Adv. Math. 88 (1994), 228287.Google Scholar
Benkart, G. and Roby, T., ‘Down–up algebras’, J. Algebra 209 (1998), 305344.Google Scholar
Fløystad, G. and Vatne, J. E., ‘PBW-deformations of N-Koszul algebras’, J. Algebra 302 (2006), 116155.Google Scholar
Fløystad, G. and Vatne, J. E., ‘Artin–Schelter regular algebras of dimension five’, in: Algebra, Geometry and Mathematical Physics, Vol. 93 (Banach Center Publications, Warszawa, 2011), 1939.Google Scholar
Gateva-Ivanova, T. and Fløystad, G., ‘Monomial algebras defined by Lyndon words’, J. Algebra 403 (2014), 470496.CrossRefGoogle Scholar
Gómez Torrecillas, J., ‘Gelfand–Kirillov dimension of multifiltered algebras’, Proc. Edinb. Math. Soc. (2) 42 (1999), 155168.Google Scholar
Gómez Torrecillas, J. and Lobillo, F. J., ‘Global homological dimension of multifiltered rings and quantized enveloping algebras’, J. Algebra 225 (2000), 522533.Google Scholar
Kirkman, E., Musson, I. M. and Passman, D. S., ‘Noetherian down–up algebras’, Proc. Amer. Math. Soc. 127 (1999), 31613167.CrossRefGoogle Scholar
Li, H.-S., Gröbner Bases in Ring Theory (World Scientific, Singapore, 2012).Google Scholar
Lu, D.-M., Palmieri, J. H., Wu, Q.-S. and Zhang, J. J., ‘Regular algebras of dimension 4 and their A -Ext-algebras’, Duke Math. J. 137(3) (2007), 537584.Google Scholar
Reyes, M., Rogalski, D. and Zhang, J. J., ‘‘Skew Calabi–Yau algebras and homological identities’, Adv. Math. 264 (2014), 308354.CrossRefGoogle Scholar
Rogalski, D. and Zhang, J. J., ‘Regular algebras of dimension 4 with 3 generators’, in: Contemporary Mathematics, Vol. 562 (American Mathematical Society, Providence, RI, 2012), 221241.Google Scholar
Shen, Y., Zhou, G.-S. and Lu, D.-M., ‘Regularity criterion and classification for algebras of Jordan type’, Preprint, 2013, arXiv:1308.3816.Google Scholar
Wang, S.-Q. and Wu, Q.-S., ‘A class of AS-regular algebras of dimension five’, J. Algebra 362 (2012), 117144.Google Scholar
Zhang, J. J., ‘Connected graded Gorenstein algebras with enough normal elements’, J. Algebra 189 (1997), 390405.CrossRefGoogle Scholar
Zhang, J. J. and Zhang, J., ‘Double Ore extension’, J. Pure Appl. Algebra 212(12) (2008), 26682690.Google Scholar
Zhang, J. J. and Zhang, J., ‘Double extension regular algebras of type (14641)’, J. Algebra 322(2) (2009), 373409.Google Scholar
Zhou, G.-S. and Lu, D.-M., ‘Artin–Schelter regular algebras of dimension five with two generators’, J. Pure Appl. Algebra 218 (2014), 937961.CrossRefGoogle Scholar
Zhou, G.-S. and Lu, D.-M., ‘Lyndon words for Artin–Schelter regular algebras’, Preprint, 2014, arXiv:1403.0385.Google Scholar
Zhou, G.-S., Shen, Y. and Lu, D.-M., ‘Homological conditions on multigraded algebras’, in preparation.Google Scholar