Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T01:55:25.550Z Has data issue: false hasContentIssue false

High Accuracy Numerical Methods for Ordinary Differential Equations with Discontinuous Right-hand Side

Published online by Cambridge University Press:  17 April 2009

David E. Stewart
Affiliation:
Department of Mathematics, The University of Queensland, Queensland 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Clarke, Frank H., ‘Optimal control and the true Hamiltonian’, SIAM Rev. 21 (1979), 157166.CrossRefGoogle Scholar
[2]Clarke, Frank H., Optimization and Nonsmooth Analysis: Canadian Mat. Soc. Ser. #1 (Wiley-Interscience, New York, 1983).Google Scholar
[3]Elliott, Charles M., ‘On the convergence of a one-step method for the numerical solution of ordinary differential inclusions’, IMA J. Numer. Anal. 5 (1985), 321.CrossRefGoogle Scholar
[4]Filippov, A.F., ‘Differential equations with discontinuous right-hand side’, Amer. Math. Soc. Transl. (Orig. in Russian in Math. Sbornik 5 pp. 99–127) (1960) 42 (1964), 199231.Google Scholar
[5]Niepage, H-D. and Wendt, W., ‘On the discrete convergence of multistep methods for differential inclusions’, Numer. Funct. Anal. Optim. 9 (1987), 591617.CrossRefGoogle Scholar
[6]Taubert, Klaus, ‘Differenzverfahren für Schwingungen mit trockener und zäher Reibung und für Regelungssysteme’, Numer. Math. 26 (1976), 379395.CrossRefGoogle Scholar
[7]Taubert, Klaus, ‘Converging multistep methods for initial value problems involving multivalued maps’, Computing 27 (1981), 123136.CrossRefGoogle Scholar