Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T05:46:57.128Z Has data issue: false hasContentIssue false

Helgason's number and lacunarity constants

Published online by Cambridge University Press:  17 April 2009

R.E. Edwards
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT;
Kenneth A. Ross
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper studies the connection between the best possible value of a constant in the compact abelian case of a known inequality due to Helgason and the Λ2-constants of sets of characters. Various estimates of and expressions for the best possible value are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Barber, Michael N. and Ninham, B.W., Random and restricted walks, theory and applications (Gordon and Breach, New York, London, Paris, 1970).Google Scholar
[2]Bourbaki, N., Éléments de mathématique, Fascicule XXIX. Livre VI: Intégration. Chapitre 8: Convolution et représentations (Actualités Scientifiques et Industrielles, No. 1306. Hermann, Paris, 1963).Google Scholar
[3]Edwards, R.E., “Changing signs of Fourier coefficients”, Pacific J. Math. 15 (1965), 463475.CrossRefGoogle Scholar
[4]Feller, William, An introduction to probability theory, Vol. 2, 2nd ed. (John Wiley & Sons, New York, London, Sydney, Toronto, 1971).Google Scholar
[5]Flachsmeyer, Jürgen und Zieschang, Heiner, “Über die schwache Konvergenz der Haarschen Masse von Untergruppen”, Math. Ann. 156 (1964), 18.CrossRefGoogle Scholar
[6]Glimm, James, “Families of induced representations”, Pacific J. Math. 12 (1962), 885911.CrossRefGoogle Scholar
[7]Helgason, S., “Multipliers of Banach algebras”, Ann. of Math. (2) 64 (1956), 240254.CrossRefGoogle Scholar
[8]Hewitt, Edwin and Ross, Kenneth A., Abstract harmonic analysis, Vol. II (Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
[9]Moran, P.A.P., An introduction to probability theory (Clarendon Press, Oxford, 1968).Google Scholar
[10]Watson, G.N., A treatise on the theory of Bessel functions, 2nd ed. (Cambridge University Press, Cambridge, 1944; reprinted 1958).Google Scholar