Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T04:29:51.375Z Has data issue: false hasContentIssue false

THE GREEN–OSHER INEQUALITY IN RELATIVE GEOMETRY

Published online by Cambridge University Press:  17 February 2016

YUNLONG YANG*
Affiliation:
Department of Mathematics, Tongji University, Shanghai 200092, PR China email [email protected]
DEYAN ZHANG
Affiliation:
School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give a proof of the Green–Osher inequality in relative geometry using the minimal convex annulus, including the necessary and sufficient condition for the case of equality.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Bonnesen, T., Les problèmes des isopérimètres et des isépiphanes (Gauthier-Villars, Paris, 1929).Google Scholar
Bonnesen, T. and Fenchel, W., Theory of Convex Bodies (BCS Associates, Moscow, 1987).Google Scholar
Böröczky, K. J., Lutwak, E., Yang, D. and Zhang, G., ‘The log-Brunn–Minkowski inequality’, Adv. Math. 231 (2012), 19741997.CrossRefGoogle Scholar
Gage, M. E., ‘An isoperimetric inequality with applications to curve shortening’, Duke Math. J. 50 (1983), 12251229.CrossRefGoogle Scholar
Gage, M. E., ‘Curve shortening makes convex curves circular’, Invent. Math. 76 (1984), 357364.Google Scholar
Gage, M. E., ‘Evolving plane curves by curvature in relative geometries’, Duke Math. J. 72 (1993), 441466.Google Scholar
Gage, M. E. and Li, Y., ‘Evolving plane curves by curvature in relative geometries II’, Duke Math. J. 75 (1994), 7998.Google Scholar
Green, M. and Osher, S., ‘Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves’, Asian J. Math. 3 (1999), 659676.Google Scholar
Guggenheimer, H., ‘Pseudo-Minkowski differential geometry’, Ann. Mat. Pura Appl. 70 (1965), 305370.CrossRefGoogle Scholar
Henk, M., Hernández Cifre, M. A. and Saorín, E., ‘Steiner polynomials via ultra-logconcave sequences’, Commun. Contemp. Math. 14 (2012), 1250040, 16 pp.Google Scholar
Hernández Cifre, M. A. and Saorín, E., ‘On the roots of the Steiner polynomial of a 3-dimensional convex body’, Adv. Geom. 7 (2007), 275294.Google Scholar
Jetter, M., ‘Bounds on the roots of the Steiner polynomial’, Adv. Geom. 11 (2011), 313317.Google Scholar
Jiang, L. S. and Pan, S. L., ‘On a non-local curve evolution problem in the plane’, Comm. Anal. Geom. 16 (2008), 126.Google Scholar
Osserman, R., ‘Bonnesen-style isoperimetric inequalities’, Amer. Math. Monthly 86 (1979), 129.CrossRefGoogle Scholar
Peri, C., Wills, J. M. and Zucco, A., ‘On Blaschke’s extension of Bonnesen’s inequality’, Geom. Dedicata 4(8) (1993), 349357.Google Scholar
Peri, C. and Zucco, A., ‘On the minimal convex annulus of a planar convex body’, Monatsh. Math. 114 (1992), 125133.Google Scholar
Sangwine-Yager, J. R., ‘Bonnesen-style inequalities for Minkowski relative geometry’, Trans. Amer. Math. Soc. 307 (1988), 373382.CrossRefGoogle Scholar