Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T21:41:18.113Z Has data issue: false hasContentIssue false

Geometric properties of the norm and basic sequences in Banach spaces

Published online by Cambridge University Press:  17 April 2009

Ivan Singer
Affiliation:
Institute of Mathematics, Str. Academiei 14, Bucuresti, Romania.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce some generalizations of Kadec'-Klee norms and use them to study characteristics of subspaces of conjugate spaces and smoothness. We give some connections between such characteristics and basic sequences, which yield, in particular, sharpenings and simpler proofs of some known characterizations of reflexivity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

[1]Banach, Stefan, Théorie des opérations linéaires (Monografje Matematyczne, 1. Z subwencji Funduszu Kultury Narodowej, Warszawa, 1932).Google Scholar
[2]Bessaga, C. and Pełczyński, A., “A generalization of results of R.C. James concerning absolute bases in Banach spaces”, Studia Math. 17 (1958), 165174.CrossRefGoogle Scholar
[3]Bessaga, Cz., Pełczyński, A., “Własności baz w przestrzeniach typu B 0” [Properties of bases in spaces of type B 0], Prace Mat. 3 (1959), 123142.Google Scholar
[4]Bishop, E. and Phelps, R.R., “A proof that every Banach space is subreflexive”, Bull. Amer. Math. Soc. 67 (1961), 9798.CrossRefGoogle Scholar
[5]Cudia, D.F., “Rotundity”, Convexity, 9397 (Proc. Sympos. Pure Math., 7. Amer. Math. Soc. Providence, Rhode Island, 1963).Google Scholar
[6]Dixmier, J., “Sur un théorèms de Banach”, Duke Math. J. 15 (1948), 10571071.CrossRefGoogle Scholar
[7]van Dulst, Dick and Singer, Ivan, “On Kadec-Klee norms on Banach spaces”, Studia Math. 54 (1975), 205211.CrossRefGoogle Scholar
[8]Gelbaum, Bernard R., “Notes on Banach spaces and bases”, An. Acad. Brasil. Ci. 30 (1958), 2936.Google Scholar
[9]Giles, J.R., “On a characterisation of differentiability of the norm of a normed linear space”, J. Austral. Math. Soc. 12 (1971), 106114.CrossRefGoogle Scholar
[10]Giles, J.R., “On smoothness of the Banach space embedding”, Bull. Austral. Math. Soc. 13 (1975), 6974.CrossRefGoogle Scholar
[11]Lindenstrauss, Joram, “On operators which attain their norm”, Israel J. Math. 1 (1963), 139148.CrossRefGoogle Scholar
[12]Pełczyński, A., “A note on the paper of I. Singer ‘Basic sequences and reflexivity of Banach spaces’”, Studia Math. 21 (19611962), 371374.Google Scholar
[13]Pełczyński, A., “A proof of Eberlein-Šmulian theorem by an application of basic sequences”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 543548.Google Scholar
[14]Restrepo, Guillermo, “Differentiate norms”, Bol. Soc. Mat. Mexicana (2) 10 (1965), 4755.Google Scholar
[15]Singer, I., “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (19611962), 351369.CrossRefGoogle Scholar
[16]Singer, Ivan, “On the problem of non-smoothness of non-reflexive second conjugate spaces”, Bull. Austral. Math. Soc. 12 (1975), 407416.CrossRefGoogle Scholar
[17]Шмульян, В.Л. [Šmulian, V.L.], “О некоторых геометрических свойствах единичной сферы пространства типа (B)” [On some geometrical properties of the unit sphere in the space of type (B) ], Mat. Sb. N.S. 48 (1938), 9094.Google Scholar
[18]Šmulian, V.L., “Sur la dérivabilité de la norme dans l'espace de Banach”, C.R. (Dokl.) Acad. Sci. URRS 27 (1940), 643648.Google Scholar
[19]Šmulian, V.L., “Sur la structure de la sphère unitaire dans l'espace de Banach”, Rec. Math. Mat. Sb. N.S. (51) 9 (1941), 545561.Google Scholar
[20]Sullivan, Francis,“Some geometric properties of higher duals of Banach spaces”, Proc. Conf. Radon-Nikodym Prop. Kent State (Preprint).Google Scholar
[21]Tzafriri, L., “Reflexivity in Banach lattices and their subspaces”, J. Functional Analysis 10 (1972), 118.Google Scholar