Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T12:52:13.210Z Has data issue: false hasContentIssue false

GENERALISATIONS OF THE DOYEN–WILSON THEOREM

Published online by Cambridge University Press:  04 December 2017

ROSALIND A. HOYTE*
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St John’s, NL, CanadaA1C 5S7 email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Alspach, B. and Gavlas, H., ‘Cycle decompositions of K n and K n - I ’, J. Combin. Theory Ser. B 81(1) (2001), 7799.Google Scholar
Bryant, D. E., Horsley, D., Maenhaut, B. M. and Smith, B. R., Decompositions of complete multigraphs into cycles of varying lengths’, Preprint, 2015, arXiv:1508.00645 [math.CO].Google Scholar
Bryant, D. E., Horsley, D. and Pettersson, W., ‘Cycle decompositions V: Complete graphs into cycles of arbitrary lengths’, Proc. Lond. Math. Soc. (3) 108(5) (2014), 11531192.Google Scholar
Bryant, D. E. and Rodger, C. A., ‘The Doyen–Wilson theorem extended to 5-cycles’, J. Combin. Theory Ser. A 68(1) (1994), 218225.Google Scholar
Bryant, D. E., Rodger, C. A. and Spicer, E. R., ‘Embeddings of m-cycle systems and incomplete m-cycle systems: m ≤ 14’, Discrete Math. 171(1–3) (1997), 5575.Google Scholar
Chou, C.-C., Fu, C.-M. and Huang, W.-C., ‘Decomposition of K m, n into short cycles’, Discrete Math. 197/198 (1999), 195203.CrossRefGoogle Scholar
Doyen, J. and Wilson, R. M., ‘Embeddings of Steiner triple systems’, Discrete Math. 5 (1973), 229239.CrossRefGoogle Scholar
Horsley, D., ‘Decomposing various graphs into short even-length cycles’, Ann. Comb. 16(3) (2012), 571589.Google Scholar
Mendelsohn, E. and Rosa, A., ‘Embedding maximal packings of triples’, Congr. Numer. 40 (1983), 235247.Google Scholar
Šajna, M., ‘Cycle decompositions III. Complete graphs and fixed length cycles’, J. Combin. Des. 10(1) (2002), 2778.Google Scholar