Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T19:23:13.919Z Has data issue: false hasContentIssue false

Generalisation of Euler's identity

Published online by Cambridge University Press:  17 April 2009

A. Sofo
Affiliation:
Department of Computer and Mathematical Sciences, Victoria University of Technology, PO Box 14428 MCMC, Melbourne Vic 8001, Australia
P. Cerone
Affiliation:
Department of Computer and Mathematical Sciences, Victoria University of Technology, PO Box 14428 MCMC, Melbourne Vic 8001, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An investigation of representation of Abel type infinite sums in closed form will be presented in this paper. An arbitrary order forced differential-difference equation will be analysed from which sums will be generated. Identities of resulting infinite sums will be proved.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Bellman, R. and Cooke, K.L., Differential difference equations (Academic Press, New York, 1993).Google Scholar
[2]Berndt, B.C., Ramanujan's notebooks, Part 1 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).Google Scholar
[3]Bruwier, L., ‘Sur l'equation fonctionelle y (n)(x)+a 1y (n−1)(x + c)+…+a n−1y′(x+(n − l)c) + any(x + nc) = 0’, in Comptes Rendus du Congres National des Sciences, Bruxelles, 1930, pp. 9197.Google Scholar
[4]Bruwier, L., ‘Sur une equation aux derivees et aux differences melees’, Mathesis 47 (1933), 96105.Google Scholar
[5]Cerone, P. and Sofo, A., ‘Summing series arising from integrodifferential-difference equations’, (V.U.T. Technical report 53), Math. 9 (1995).Google Scholar
[6]Erlang, A.K., ‘Telefon-ventetider et stykke sandsynlighed-sregning’, Mathematik Tidsskrift B 31 (1920), p. 25.Google Scholar
[7]Euler, L., ‘De serie Lambertina plurimisque eius insignibus proprietatibus’, Acta Acad. Sci Petropolitanae (1779), 2951; II, (1783).Google Scholar
[8]Euler, L., ‘Opera omnia’, B.G. Teubner, Leipzig, Serie 1 6 (1921), 350369.Google Scholar
[9]Feller, W., An introduction to probability theory and its applications (John Wiley and Sons, New York, 1971).Google Scholar
[10]Hall, P., Introduction to the theory of coverage processes (John Wiley and Sons, New York, 1988).Google Scholar
[11]Hardy, G.H., Aiyar, P.V. Seshu and Wilson, B.M. (Editors), Collected papers of Srinivasa Ramanujan (Chelsea Publishing Company, New York, 1962).Google Scholar
[12]Jensen, J.L.W.V., ‘Sur une identite d'abel et sur d'autres formules analogues’, Acta Math. 26 (1902), 307313.Google Scholar
[13]Pólya, G. and Szegö, G., Aufgaben und Lehrsatze aus der Analysis (Springer-Verlag, Berlin, Dover, New York, 1945).Google Scholar
[14]Pyke, R. and Weistock, R., ‘Special infinite series’, Amer. Math. Monthly 67 (1960), 704.CrossRefGoogle Scholar
[15]Smith, W.L., ‘Renewal theory and its ramifications’, Royal Stat. Soc. J. Ser. B 20 (1958), 243302.Google Scholar
[16]Sofo, A. and Cerone, P., ‘Generalisation of a waiting time relation’, J. Math. Anal. Appl. 214 (1997), 191206.Google Scholar
[17]Tijms, H.C., Stochastic modelling and analysis: A computational approach (John Wiley and Sons, New York, 1986).Google Scholar
[18]Woodward, S.J.R. and Wake, G.C., ‘A differential-delay model of pasture accumulation and loss in controlled grazing systems’, Math. Biosci. 121 (1994), 3760.Google Scholar