Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:48:56.077Z Has data issue: false hasContentIssue false

Generalisation of an inequality of C.T. Chuang to vector meromorphic functions

Published online by Cambridge University Press:  17 April 2009

Indrajit Lahiri
Affiliation:
Department of Mathematics, Jadavpur University, Calcutta 700032, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalise Chuang's inequality to vector meromorphic functions, which is originally a sort of extension of Nevanlinna's second fundamental theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Chung, Chi tai, ‘Une généralisation d'une inégalité de Nevalinna’, Scientia Sinica XIII (1964), 887895.Google Scholar
[2]Dai, C. and Yang, C.C., ‘On the growth of linear differential polynomials of meromorphic functions’, J. Math. Anal. Appl. 150 (1990), 7984.CrossRefGoogle Scholar
[3]Dufresnoy, J., ‘Sur les valeurs exceptionnelles des fonctions méromorphes voisines d'une fonction méromorphe donnée’, C.R. Acad. Sci. 208 (1939), 255.Google Scholar
[4]Frank, G. and Weissenborn, G., ‘On the zeros of linear differential polynomials of meromorphic functions’, Complex Variables Theory Appl. 12 (1989), 7781.Google Scholar
[5]Hayman, W.K., Meromorphic functions (The Clarendon Press, 1964).Google Scholar
[6]Hiong, K.L., ‘Sur les fonctions méromorphes et les fonctions algébroides’, Mémor. Sc. Math. Fase CXXXIX, 30.Google Scholar
[7]Lahiri, I., ‘Milloux theorem and deficiency of vector valued meromorphic functions’, J. Indian Math. Soc. 55 (1990), 235250.Google Scholar
[8]Lahiri, I., ‘Milloux theorem, deficiency and fixpoints of vector valued meromorphic functions’, communicated.Google Scholar
[9]Nevanlinna, R., Analytic functions (Springer Verlag, Berlin, Heidelberg, New York, 1970).CrossRefGoogle Scholar
[10]Steinmentz, N., ‘Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes’, J. Reine Angrew Math. 368 (1986), 134141.Google Scholar
[11]Steinmentz, N., ‘On the zeros of a certain Wronskian’, Bull. London Math. Soc. 20 (1988), 525531.CrossRefGoogle Scholar
[12]Ziegler, H.J.W., Vector valued Nevanlinna theory (Pitman Advanced Publishing Program, 1982).Google Scholar