No CrossRef data available.
Article contents
A GENERALISATION OF A THEOREM OF ERDŐS AND NIVEN
Published online by Cambridge University Press: 24 January 2022
Abstract
In 1946, Erdős and Niven proved that no two partial sums of the harmonic series can be equal. We present a generalisation of the Erdős–Niven theorem by showing that no two partial sums of the series $\sum _{k=0}^\infty {1}/{(a+bk)}$ can be equal, where a and b are positive integers. The proof of our result uses analytic and p-adic methods.
Keywords
MSC classification
Primary:
11B25: Arithmetic progressions
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 106 , Issue 2 , October 2022 , pp. 215 - 223
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
S. F. Hong was supported partially by National Science Foundation of China, Grant #12171332.
References
Chen, Y. G. and Tang, M., ‘On the elementary symmetric functions of
$1,1/ 2,\dots, 1/ n$
’, Amer. Math. Monthly 119 (2012), 862–867.CrossRefGoogle Scholar
Erdős, P. and Niven, I., ‘Some properties of partial sums of the harmonic series’, Bull. Amer. Math. Soc. (N.S.) 52 (1946), 248–251.CrossRefGoogle Scholar
Feng, Y. L., Hong, S. F., Jiang, X. and Yin, Q. Y., ‘A generalization of a theorem of Nagell’, Acta Math. Hungar. 157 (2019), 522–536.CrossRefGoogle Scholar
Hong, S. F. and Wang, C. L., ‘The elementary symmetric functions of reciprocals of the elements of arithmetic progressions’, Acta Math. Hungar. 144 (2014), 196–211.CrossRefGoogle Scholar
Koblitz, N.,
$p$
-adic Numbers,
$p$
-adic Analysis and Zeta-Functions, Graduate Texts in Mathematics, 58 (Springer, New York, 1984).Google Scholar
Luo, Y. Y., Hong, S. F., Qian, G. Y. and Wang, C. L., ‘The elementary symmetric functions of a reciprocal polynomial sequence’, C. R. Math. Acad. Sci. Paris, Ser. I 352 (2014), 269–272.CrossRefGoogle Scholar
Nagell, T., ‘Eine Eigenschaft gewissen Summen’, Skr. Norske Vid. Akad. Kristiania 13 (1923), 10–15.Google Scholar
Shorey, T. N. and Tijdeman, R., ‘On the greatest prime factor of an arithmetical progression’, in: A Tribute to Paul Erdős (eds. Baker, A., Bollabás, B. and Hajnal, A.) (Cambridge University Press, Cambridge, 1990), 385–389.CrossRefGoogle Scholar
Theisinger, L., ‘Bemerkung über die harmonische Reihe’, Monatsh. Math. Phys. 26 (1915), 132–134.CrossRefGoogle Scholar
Wang, C. L. and Hong, S. F., ‘On the integrality of the elementary symmetric functions of
$1,1/ 3,\dots, 1/ \left(2n-1\right)$
’, Math. Slovaca 65 (2015), 957–962.CrossRefGoogle Scholar