Published online by Cambridge University Press: 28 June 2013
We show that the direct sum $\mathop{({X}_{1} \oplus \cdots \oplus {X}_{r} )}\nolimits_{\psi } $ with a strictly monotone norm has the weak fixed point property for nonexpansive mappings whenever $M({X}_{i} )\gt 1$ for each $i= 1, \ldots , r$. In particular, $\mathop{({X}_{1} \oplus \cdots \oplus {X}_{r} )}\nolimits_{\psi } $ enjoys the fixed point property if Banach spaces ${X}_{i} $ are uniformly nonsquare. This combined with the earlier results gives a definitive answer for $r= 2$: a direct sum ${X}_{1} {\mathop{\oplus }\nolimits}_{\psi } {X}_{2} $ of uniformly nonsquare spaces with any monotone norm has the fixed point property. Our results are extended to asymptotically nonexpansive mappings in the intermediate sense.