Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T05:53:43.286Z Has data issue: false hasContentIssue false

FINITE GROUPS WITH TWO p-REGULAR CONJUGACY CLASS LENGTHS II

Published online by Cambridge University Press:  17 April 2009

ELENA ALEMANY
Affiliation:
Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain (email: [email protected])
ANTONIO BELTRÁN*
Affiliation:
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain (email: [email protected])
MARÍA JOSÉ FELIPE
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite group. We prove that if the set of p-regular conjugacy class sizes of G has exactly two elements, then G has Abelian p-complement or G=PQ×A, with PSylp(G), QSylq(G) and A Abelian.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

Footnotes

This work was partially supported by grant MTM2007-68010-C03-03 and the second author is also supported by grant Fundació Caixa-Castelló P1-1A2006-06.

References

[1] Beltrán, A. and Felipe, M. J., ‘Finite groups with two p-regular conjugacy class lengths’, Bull. Aust. Math. Soc. 67 (2003), 163169.CrossRefGoogle Scholar
[2] Camina, A. R., ‘Finite groups of conjugate rank 2’, Nagoya Math. J. 53 (1974), 4757.CrossRefGoogle Scholar
[3] Gorenstein, D. and Walter, J. H., ‘On finite groups with dihedral Sylow 2-subgroups’, Illinois J. Math. 6 (1962), 553593.CrossRefGoogle Scholar
[4] Huppert, B., Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, 25 (Berlin, New York, 1998).CrossRefGoogle Scholar
[5] Itô, N., ‘On finite groups with given conjugate type I’, Nagoya Math. J. 6 (1953), 1728.CrossRefGoogle Scholar
[6] Robinson, D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, 2nd edn (Springer, New York, 1996).CrossRefGoogle Scholar