Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:38:22.119Z Has data issue: false hasContentIssue false

Farthest points and monotone operators

Published online by Cambridge University Press:  17 April 2009

U. Westphal
Affiliation:
Institut für Mathematik, Universität Hannover, Welfengarten 1, 30167 HannoverGermany e-mail: [email protected], [email protected]
T. Schwartz
Affiliation:
Institut für Mathematik, Universität Hannover, Welfengarten 1, 30167 HannoverGermany e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply the theory of monotone operators to study farthest points in closed bounded subsets of real Banach spaces. This new approach reveals the intimate connection between the farthest point mapping and the subdifferential of the farthest distance function. Moreover, we prove that a typical exception set in the Baire category sense is pathwise connected. Stronger results are obtained in Hilbert spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Asplund, E., ‘Farthest points in reflexive locally uniformly rotund Banach spaces’, Israel J. Math. 4 (1966), 213216.Google Scholar
[2]Asplund, E., ‘Chebyshev Sets in Hilbert Space’, Trans. Amer. Math. Soc. 144 (1969), 235240.Google Scholar
[3]Balaganskiiǐ, V. S., ‘On the connection between approximation and geometric properties of sets’, (Russian), in Approximation in concrete and abstract Banach spaces, Akad. Nauk SSSR (Urals'kiǐ Naučnyi Centr, Sverdlovsk, 1987), pp. 4653.Google Scholar
[4]Balaganskiǐ, V. S., ‘On the connectedness of the set of points of discontinuity of the metric projection’, East J. Approx. 2 (1996), 263279.Google Scholar
[5]Balaganskiǐ, V. S. and Vlasov, L. P., ‘The problem of convexity of Chebyshev sets’, Russian Math. Surveys 51 (1996), 11271192.Google Scholar
[6]Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Noordhoff International Publishing, Leyden, 1976).Google Scholar
[7]Bartke, K. and Berens, H., ‘Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der euklidischen Ebene’, J. Approx. Theory 47 (1986), 5474.CrossRefGoogle Scholar
[8]Berens, H., ‘Best approximation in Hilbert space’, in Approximation theory III, (Cheney, E.W., Editor) (Academic Press, New York, 1980), pp. 120.Google Scholar
[9]Berens, H. and Westphal, U., ‘Kodissipative metrische Projektionen in normierten linearen Räumen’, in Linear spaces and approximation, (Butzer, P. L. and -Nagy, B. Sz., Editors) (Birkhäuser, Basel, 1978), pp. 120130.Google Scholar
[10]Blatter, J., ‘Weiteste Punkte und nächste Punkte’, Rev. Routnaine Math. Pures Appl. 14 (1969), 615621.Google Scholar
[11]Bréezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematics Studies 5 (North-Holland Publishing Company, Amsterdam, 1973).Google Scholar
[12]Cioranescu, I., Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications 62 (Kluwer, Dordrecht, Boston, London, 1990).CrossRefGoogle Scholar
[13]Day, M. M., Normed linear spaces, (3rd ed.) (Springer-Verlag, Berlin, Heidelberg, New York, 1973).CrossRefGoogle Scholar
[14]Deimling, K., Nonlinear functional analysis (Springer-Verlag, Berlin, Heidelberg, New York, 1985).CrossRefGoogle Scholar
[15]Deville, R. and Zizler, V., ‘Farthest points in w*-compact sets’, Bull. Austral. Math. Soc. 38 (1988), 433439.Google Scholar
[16]Edelstein, M., ‘Farthest points in uniformly convex Banach spaces’, Israel J. Math. 4 (1966), 171176.CrossRefGoogle Scholar
[17]Edelstein, M. and Lewis, J., ‘On exposed and farthest points in normed linear spaces’, J. Austral. Math. Soc. 12 (1971), 301308.Google Scholar
[18]Fitzpatrick, S., ‘Metric projections and the differentiability of distance functions’, Bull. Austral. Math. Soc. 22 (1980), 291312.Google Scholar
[19]Giles, J. R., Convex analysis with application in the differentiation of convex functions (Pitman, Boston, London, Melbourne, 1982).Google Scholar
[20]Konyagin, S. V., ‘Set of points of discontinuity of a metric projection on Chebyshev sets in Hilbert space’, in Internat. Conf. on Theory of Approximation, Kaluga 1996, Abstracts of lectures 1, (1996), pp. 120121.Google Scholar
[21]Lau, K.-S., ‘Farthest points in weakly compact sets’, Israel J. Math. 22 (1975), 168174.Google Scholar
[22]Phelps, R. R., Convex functions, monotone operators and differentiability, Lecture Notes in Math. 1364 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).CrossRefGoogle Scholar
[23]Schwartz, T., ‘Farthest points and monotonicity methods in Hilbert spaces’, in Approximation and optimization I, (Stancu, D.D. et al. , Editors) (Transilvania Press, Cluj-Napoca, 1997), pp. 351356.Google Scholar
[24]Veselý, L., ‘A connectedness property of maximal monotone operators and its application to approximation theory’, Proc. Amer. Math. Soc. 115 (1992), 663667.Google Scholar
[25]Westphal, U. and Frerking, J., ‘On a property of metric projections onto closed subsets of Hilbert spaces’, Proc. Amer. Math. Soc. 105 (1989), 644651.Google Scholar
[26]Zeidler, E., Nonlinear functional analysis and its applications II/B, Nonlinear Monotone Operators (Springer-Verlag, Berlin, Heidelberg, New York, 1990).Google Scholar
[27]Zhivkov, N. V., ‘Continuity and non-multivaluedness properties of metric projections and antiprojections’, Serdica 8 (1982), 378385.Google Scholar
[28]Zhivkov, N. V., ‘Compacta with dense ambiguous loci of metric projections and antiprojections’, Proc. Amer. Math. Soc. 123 (1995), 34033411.Google Scholar