Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T03:45:51.772Z Has data issue: false hasContentIssue false

Extended Cesàro operator between some holomorphic function spaces

Published online by Cambridge University Press:  17 April 2009

Xiaofen Lv
Affiliation:
Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang, 313000, Peoples Republic of China, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize the boundedness and compactness of the extended Cesàro operator Tg from H∞ to the mixed norm space and Bloch-type space (or little Bloch-type space), where g is a given holomorphic function in the unit ball of Cn and Tg is defined by .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Aleman, A. and Cima, J., ‘An integral operator on Hp and Hardy's inequality’, J. Anal. Math. 85 (2001), 157176.Google Scholar
[2]Aleman, A. and Siskakis, A.G., ‘Integration operators on Bergman spaces’, Indiana Univ. Math. J. 46 (1997), 337356.CrossRefGoogle Scholar
[3]Hu, Z.J., ‘Extended Cesàro operators on Bergman spaces’, J. Math. Anal. Appl. 296 (2004), 435454.CrossRefGoogle Scholar
[4]Hu, Z.J., ‘Extended Cesàro operators on mixed norm spaces’, Proc. Amer. Math. Soc. 131 (2003), 21712179.Google Scholar
[5]Miao, J., ‘The Cesàro operator is bounded on Hp for 0 < p < 1’, Proc. Amer. Math. Soc. 116 (1992), 10771079.Google Scholar
[6]Pommerenke, Ch., ‘Schlichte funktionen und analytische funktionen von beschrankter mittlerer oszilation’, Comment Math. Helv. 52 (1977), 591602.CrossRefGoogle Scholar
[7]Siskakis, A.G., ‘Composition semigroups and the Cesàro operator on Hp’, J. London Math. Soc. (2) 36 (1987), 153164.Google Scholar
[8]Siskakis, A.G., ‘On the Bergman space norm of the Cesàro operator’, Arch. Math. (Basel) 67 (1996), 312318.CrossRefGoogle Scholar
[9]Tang, X.M., ‘Extended Cesàro operators between Bloch-type spaces in the unit ball of Cn’, J. Math. Anal. Appl. (2006) (to appear).Google Scholar
[10]Wang, S.S. and Hu, Z.J., ‘Extended Cesàro operators on Bloch-type spaces’, (Chinese), Chinese Ann. Math. Ser. A 26 (2005), 613624.Google Scholar
[11]Xiao, J., ‘Cesàro operators on Hardy, BMOA and Bloch spaces’, Arch. Math. (Basel) 68 (1997), 398406.CrossRefGoogle Scholar
[12]Xiao, J. and Tan, H., ‘p-Bergman spaces ⍺-Bloch spaces little ⍺-Bloch spaces and Cesàro means’, (Chinese), Chinese Ann. Math. Ser. A 19 (1998), 187196.Google Scholar
[13]Zhang, X.J., ‘Weigted Cesàro operators on Dirichlet type spaces and Bloch type spaces of Cn’, (Chinese), Chinese. Ann. Math. Ser. A 26 (2005), 139150.Google Scholar