Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:32:09.999Z Has data issue: false hasContentIssue false

Enriched accessible categories

Published online by Cambridge University Press:  17 April 2009

Francis Borceux
Affiliation:
Departement de Mathematiques, Universite de Louvain, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium
Carmen Quinteriro
Affiliation:
Universidade de Vigo, Facultade de Ciencias Económicas e Empresariais, Lagoas – Marcosende s/n, 36200 Vigo, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider category theory enriched in a locally finitely presentable symmetric monoidal closed category ν. We define the ν-filtered colimits as those colimits weighted by a ν-flat presheaf and consider the corresponding notion of ν-accessible category. We prove that ν-accessible categories coincide with the categories of ν-flat presheaves and also with the categories of ν-points of the categories of ν-presheaves. Moreover, the ν-locally finitely presentable categories are exactly the ν-cocomplete finitely accessible ones. To prove this last result, we show that the Cauchy completion of a small ν-category Cis equivalent to the category of ν-finitely presentable ν-flat presheaves on C.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Borceux, F., Handbook of categorical algebra I, II, III, Encyclopedia of Math, and its Appl. 50, 51, 52 (Cambridge, 1994).Google Scholar
[2]Eilenberg, S. and Kelly, G.M., ‘Closed categories’, in Proceedings Conference on Categorical Algebra, La Jolla 1965 (Springer-Verlag, Berlin, Heidelberg, New York, 1966), pp. 421562.Google Scholar
[3]Gabriel, P. and Ulmer, F., Lokal präsentierbare Kategorien, Springer Lecture Notes in Maths 221, 1971.Google Scholar
[4]Johnson, S.R., ‘Small Cauchy completions’, J. Pure Appl. Algebra 62 (1989), 3545.CrossRefGoogle Scholar
[5]Kelly, G.M., Basic concepts of enriched category theory, London Math. Society Lecture Note Series 64 (Cambridge University Press, Cambridge, 1982).Google Scholar
[6]Kelly, G.M., ‘Structures defined by finite limits in the enriched context, I’, Cahiers Topologie Géom. Différentiate Catégoriques XXIII–1 (1982), 342.Google Scholar
[7]Street, R., ‘Absolute colimits in enriched categories’, Cahiers Topologie Géom. Différentielle Catégoriques XXIV–4 (1983), 377379.Google Scholar