No CrossRef data available.
Article contents
The dynamics of an Action of Sp(2n, Z)
Published online by Cambridge University Press: 17 April 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
S.G. Dani and S. Raghavan showed the linear action of Sp(2n,ℤ) on the space of symplectic p-frames for p ≤ n is topologically transitive. We give an alternative proof, from the prime number theorem and the congruence subgroup theorem, and show the action of every finite index subgroup of Sp(2n, ℤ) is topologically transitive.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2005
References
[1]Apostol, T.M., Introduction to analytic number theory (Springer-Verlag, New York, 1976).Google Scholar
[2]Artin, E., Geometric algebra (Interscience Publishers, Inc., New York-London, 1957).Google Scholar
[3]Bass, H., Lazard, M., and Serre, J.-P., ‘Sous-groupes d'indice fini dans SL(n, Z)’, Bull. Amer. Math. Soc. 70 (1964), 385–392.CrossRefGoogle Scholar
[4]Cairns, G. and Nielsen, A., ‘On the dynamics of the linear action of SL(n, Z)’, Bull. Austral. Math. Soc. 71 (2005), 359–365.CrossRefGoogle Scholar
[5]Dani, S.G. and Raghavan, S., ‘Orbits of Euclidean frames under discrete linear groups’, Israel J. Math. 36 (1980), 300–320.CrossRefGoogle Scholar
[6]Hobby, D. and Silberger, D.M., ‘Quotients of primes’, Amer. Math. Monthly 100 (1993), 50–52.CrossRefGoogle Scholar
[7]Humphreys, J.E., Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
[8]Mennicke, J.L., ‘Finite factor groups of the unimodular group’, Ann. of Math. (2) 81 (1965), 31–37.CrossRefGoogle Scholar
[9]Sierpiński, W., Elementary theory of numbers, Monografie Matematyczne 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).Google Scholar
You have
Access