Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T10:21:35.278Z Has data issue: false hasContentIssue false

A dual characterisation of the existence of small combinations of slices

Published online by Cambridge University Press:  17 April 2009

Robert Deville
Affiliation:
Equipe d'Analyse fonctionelle, Université Paris VIFRANCE.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise, by a property of roughness, the norms of a Banach space X such that the dual unit ball has no small combination of ω*-slices. Among separable Banach spaces, the existence of an equivalent norm for this new property of roughness characterises spaces which contain an isomorphic copy of ℓ1(N).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Bourgain, J., ‘La propriete de Radon Nikodym’, Publications de I'université Pierre et Marie Curie 36 (1979).Google Scholar
[2]Goussoub, N., Godefroy, G., Maurey, B. and Schachermayer, W., ‘Some topological and geometrical structures in Banach spaces’, Mem. Amer. Math. Soc. (to appear).Google Scholar
[3]Godefroy, G. and Maurey, B., ‘Normes lisses et normes anguleuses sur les espaces de Banach separables’ (to appear).Google Scholar
[4]Godini, G., ‘Rough and strongly rough norms on Banach spaces’, Proc. Amer. Math. Soc. 87 (1983), 239245.CrossRefGoogle Scholar
[5]John, K. and Zizler, V., ‘On rough norms on Banach spaces’, Comment. Math. Univ. Carotin. 19 (1978), 335349.Google Scholar
[6]Leach, E.B. and Whitfield, J.H.M, ‘Differentiable functions and rough norms on Banach spaces’, Proc. Amer. Math. Soc. 33 (1972), 120126.CrossRefGoogle Scholar
[7]Rosenthal, H.P., ‘On the structure of non-dentable closed bounded convex sets’ (to appear).Google Scholar
[8]Sullivan, F., ‘Dentability, smoothability and stronger properties in Banach spaces’, Indiana Univ. Math. J. 26 (1977), 545553.CrossRefGoogle Scholar
[9]Whitfield, J. and Zizler, V., ‘A survey of rough norms with applications’, Contemp. Math. 54 (1986).CrossRefGoogle Scholar
[10]Van Dulst, D., ‘Reflexive and superreflexive Banach spaces’, Mathematical Centre Tracts 102, Amsterdam 1978.Google Scholar