Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T02:26:38.777Z Has data issue: false hasContentIssue false

DISTRIBUTION OF r-FREE INTEGERS OVER A FLOOR FUNCTION SET

Published online by Cambridge University Press:  23 November 2022

PINTHIRA TANGSUPPHATHAWAT
Affiliation:
Department of Mathematics, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand e-mail: [email protected]
TEERAPAT SRICHAN*
Affiliation:
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
VICHIAN LAOHAKOSOL
Affiliation:
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

For a positive integer $r\geq 2$, a natural number n is r-free if there is no prime p such that $p^r\mid n$. Asymptotic formulae for the distribution of r-free integers in the floor function set $S(x):=\{\lfloor x/ n \rfloor :1\leq n\leq x\}$ are derived. The first formula uses an estimate for elements of $S(x)$ belonging to arithmetic progressions. The other, more refined, formula makes use of an exponent pair and the Riemann hypothesis.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction and results

Let $\lfloor t \rfloor $ be the integral part of $t\in \mathbb {R}$ and let r be a fixed integer $\geq 2$ . A positive integer n is called r-free if in its canonical prime representation, each exponent is $<r$ ; a 2-free integer is also called square-free. Let $\mu _r$ be the characteristic function of the r-free integers. There is considerable research on the distribution of r-free integers over certain special sets, such as the set of integer parts, the Beatty sequence $\lfloor \alpha n+\beta \rfloor $ , [Reference Abercrombie, Banks and Shparlinski1, Reference Goryashin8, Reference Gűloğlu and Nevans9, Reference Veasna, Srichan and Mavecha19] and the Piatetski-Shapiro sequence $\lfloor n^c \rfloor $ , [Reference Cao and Zhai5Reference Deshouillers7, Reference Rieger13Reference Srichan15, Reference Stux17, Reference Tangsupphathawat, Srichan and Laohakosol18, Reference Zhang and Jinjiang21]. In 2019, Bordellés et al. [Reference Bordellés, Dai, Heyman, Pan and Shparlinski4] established an asymptotic formula for a sum of the form

$$ \begin{align*} \sum_{n\leq x}f\bigg( \bigg\lfloor\frac{x}{n}\bigg\rfloor \bigg), \end{align*} $$

where f is an arithmetic function subject to some growth condition, and applied it in particular to Euler’s totient function. It is thus natural to consider such a sum for various other functions. For example, in [Reference Bordellés3], Bordellés proved that

(1.1) $$ \begin{align} S_{\mu_2}(x)=x\sum_{n=1}^\infty \frac{\mu_2(n)}{n(n+1)}+O(x^{1919/4268+\epsilon}), \end{align} $$

where $\mu _2(n)$ is the characteristic function of the set of square-free numbers. Later, Liu et al. [Reference Liu, Wu and Yang12] improved the O-term in (1.1) to $O(x^{2/5+\epsilon })$ . In 2022, Stucky [Reference Stucky16] generalised the sum in (1.1) to the case of r-free integers and showed that for $r\geq 3,$

$$ \begin{align*} S_{\mu_r}(x)=\sum_{n=1}^\infty \frac{\mu_r(n)}{n(n+1)}x+O(x^{\theta_r}),\quad \theta_r:=\frac{r+1}{3r+1}, \end{align*} $$

where $\mu _r(n)$ is the characteristic function of the set of r-free numbers. Very recently, Heyman [Reference Heyman10] considered the floor function set

(1.2) $$ \begin{align} S(x):=\bigg\{\bigg\lfloor \frac{x}{n} \bigg\rfloor :1\leq n\leq x\bigg\} \end{align} $$

and studied the number of primes in $S(x)$ . Our objective here is to investigate how the r-free integers are distributed over the set $S(x)$ , that is, to ask for an asymptotic estimate for the function

(1.3) $$ \begin{align} T_{\mu_r}(x):=\sum_{m\in S(x)}\mu_r(m). \end{align} $$

There first arises the question whether the sum (1.3) is identical or related to the sum

(1.4) $$ \begin{align} S_{\mu_r}(x):=\sum_{n\leq x}\mu_r\bigg( \bigg\lfloor\frac{x}{n}\bigg\rfloor \bigg). \end{align} $$

To answer this question, we rewrite the sum (1.3) as

$$ \begin{align*} T_{\mu_r}(x)=\sum_{\substack{m\leq x\\ \exists n\in \mathbb{N} \text{ such that }\lfloor x/n \rfloor=m}}\mu_r(m). \end{align*} $$

Observe that each argument appears once in the sum (1.3), but usually appears several times in the sum (1.4), as seen in the following example. Taking $x=20$ and $r=2$ , for the sum (1.4), we get

$$ \begin{align*} &S_{\mu_2}(20)=\sum_{n\leq 20}\mu_2\bigg( \bigg\lfloor\frac{20}{n}\bigg\rfloor \bigg)\\ &=\mu_2(20)+\mu_2(10)+\mu_2(6)+\mu_2(5)+\mu_2(4)+\mu_2(3)+\mu_2(2)+\mu_2(2)+\mu_2(2)+\mu_2(2)\\ &\quad +\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)+\mu_2(1)\\ &=\mu_2(20)+\mu_2(10)+\mu_2(6)+\mu_2(5)+\mu_2(4)+\mu_2(3)+4\mu_2(2)+10\mu_2(1)=18, \end{align*} $$

while for the sum (1.3), we get $S(20)=\{\lfloor {20}/{n} \rfloor :1\leq n\leq 20\}=\{1, 2, 3, 4, 5, 6, 10, 20\}$ and

$$ \begin{align*} T_{\mu_2}(20)&=\sum_{m\in S(20)}\mu_2(m) \\ &=\mu_2(20)+\mu_2(10)+\mu_2(6)+\mu_2(5)+\mu_2(4)+\mu_2(3)+\mu_2(2)+\mu_2(1) =6. \end{align*} $$

Our first main result is proved using the following estimate of Yu and Wu [Reference Yu and Wu20].

Lemma 1.1 [Reference Yu and Wu20].

Let $x\in \mathbb {R},\ x>0$ , let $q, a\in \mathbb {Z}$ such that $0\leq a<q\leq x^{1/4}\log ^{-3/2} x$ and let $S(x)$ be as defined in (1.2). Then,

$$ \begin{align*} \sum_{\substack{n\in S(x)\\ n \, \equiv\, a\ ({\mathrm{mod }}\, q)}}1=\frac{2x^{1/2}}{q }+ O \bigg(\frac{x^{1/3}}{q^{1/3}}\log x\bigg). \end{align*} $$

Remark 1.2. For real large x, let $S(x)$ be as defined in (1.2). We shall need the estimate $\lvert {S(x)}\rvert =O(x^{1/2})$ in our proofs. To verify this, note that for $n\in \{1,2,\ldots \lfloor x\rfloor \}$ :

  • if $\lfloor x/n \rfloor =1$ , then $n\leq x$ ;

  • if $\lfloor x/n \rfloor =2$ , then $n\leq x/2$ ;

  • if $\lfloor x/n \rfloor =\lfloor x^{1/2}\rfloor $ , then $n< x^{1/2}$ .

It follows that for $n<x^{1/2}$ , the function $\lfloor x/n\rfloor $ takes at most $\lfloor x^{1/2}\rfloor $ distinct integral values. However, if $n\geq x^{1/2}$ , the function $\lfloor x/n\rfloor \leq x^{1/2}$ can then take at most $\lfloor x^{1/2}\rfloor $ integral values. Thus, $\lvert {S(x)}\rvert \leq 2\lfloor x^{1/2}\rfloor =O(x^{1/2})$ .

Our first theorem reads as follows.

Theorem 1.3. Let $S(x)$ and $T_{\mu _r}$ be as defined in (1.2) and (1.3). Then,

$$ \begin{align*} T_{\mu_r}(x)=\frac{2x^{1/2}}{\zeta(r)}+\begin{cases} O(x^{3/8}\log^{3/4} x) & \text{for } r=2, \\ O(x^{1/3}\log x) & \text{for } r\geq3.\\ \end{cases} \end{align*} $$

Regarding our second main result, very recently, Zhang [Reference Zhang22] improved the results of Bordellés (1.1), Stuctky [Reference Stucky16] and Liu et al. [Reference Liu, Wu and Yang12] by proving using the exponent pair method, that

$$ \begin{align*} S_{\mu_r}(x)=x\sum_{n=1}^\infty \frac{\mu_r(n)}{n(n+1)}+\begin{cases} O(x^{11/29}\log^{2} x) & \text{for } r=2, \\ O(x^{1/3}\log^2 x) & \text{for } r=3,\\ O(x^{1/3}\log x), & \text{for } r\geq 3. \end{cases} \end{align*} $$

We use the same idea as in [Reference Zhang22] to give another formula, which, in the case $r=2$ , is slightly weaker than that in Theorem 1.3.

Theorem 1.4. For an exponent pair $(\kappa ,\lambda )$ such that ${1}/{2}<{\lambda }/{(1+\kappa )}$ , we have

$$ \begin{align*} T_{\mu_r}(x)=\frac{2x^{1/2}}{\zeta(r)}+\begin{cases} O( x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)}) & \text{for } r=2, \\ O(x^{1/3}\log x) & \text{for } r\geq3. \end{cases} \end{align*} $$

We note in passing that a result better than that in Theorem 1.4 for the case $r=2$ can be derived, assuming the Riemann hypothesis, by taking the exponent pair $(\kappa , \lambda )=(2/7, 4/7)$ to get

$$ \begin{align*} T_{\mu_2}(x)=\frac{2x^{1/2}}{\zeta(2)}+ O( x^{13/36}(\log x)^{1/6} ). \end{align*} $$

Under the Riemann hypothesis, we can omit the restriction on the exponent pair $(\kappa ,\lambda )$ such that ${1}/{2}<{\lambda }/{(1+\kappa )}$ and obtain the following result.

Theorem 1.5. Assume the Riemann hypothesis. For an exponent pair $(\kappa ,\lambda )$ such that ${1}/{4}<{\lambda }/{(1+\kappa )}$ , we have

$$ \begin{align*} T_{\mu_2}(x)=\frac{2x^{1/2}}{\zeta(2)}+ O( x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)}). \end{align*} $$

2 Proofs

Proof of Theorem 1.3.

Since $\mu _r(n)$ is the characteristic function of the set of r-free numbers, by the well-known identity $\mu _r(n)=\sum _{d^r\mid n}\mu (d)$ , we have

$$ \begin{align*} T_{\mu_r}(x)&=\sum_{n\in S(x)}\mu_r(n)=\sum_{n\in S(x)}\sum_{d^r\mid n}\mu(d) =\sum_{d\leq x^{1/r}}\mu(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d^r\textrm{)}} }}1\\ &=\sum_{d\leq x^{1/4r}\log^{-3/2r} x}\mu(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d^r\textrm{)}} }}1+\sum_{ x^{1/4r}\log^{-3/2r} x< d\leq x^{1/r}}\mu(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d^r\textrm{)}} }}1. \end{align*} $$

Using Lemma 1.1 to compute the first sum, we have

$$ \begin{align*} \sum_{d\leq x^{1/4r}\log^{-3/2r} x}\mu(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d^r\textrm{)}} }}1 & =\sum_{d\leq x^{1/4r}\log^{-3/2r} x}\mu(d)\bigg(\frac{2x^{1/2}}{d^r }+ O \bigg(\frac{x^{1/3}}{d^{r/3}}\log x\bigg)\bigg)\\ &=\frac{2x^{1/2}}{\zeta(r)}+\begin{cases} O(x^{3/8}\log^{3/4} x) & \text{for } r=2, \\ O(x^{1/3}\log x) & \text{for } r\geq3. \end{cases} \end{align*} $$

By the remark preceding the statement of Theorem 1.3, we have $\lvert {S(x)}\rvert =O(x^{1/2})$ and so the second sum is bounded by

$$ \begin{align*} \sum_{ x^{1/4r}\log^{-3/2r} x< d\leq x^{1/r}}\mu(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d^2\textrm{)}} }}1&=O\bigg(x^{1/2}\sum_{ x^{1/4r}\log^{-3/2r} x< d\leq x^{1/r}}\frac{1}{ d^2}\bigg)\\ &=\begin{cases} O(x^{3/8}\log^{3/4} x) & \text{for } r=2, \\ O(x^{1/4}\log^{1/2} x) & \text{for } r\geq3, \end{cases} \end{align*} $$

which completes the proof of Theorem 1.3.

Proof of Theorem 1.4.

In view of [Reference Ivić11, (14.23)],

$$ \begin{align*}\mu_r(n)=\sum_{d\mid n}g(d),\quad\text{where } g(d)=\begin{cases} \mu(\ell) & \text{if } d=\ell^r,\ \text{for some } \ell\in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}\end{align*} $$

From the definition of $g(d)$ ,

(2.1) $$ \begin{align} \sum_{d\leq x}\lvert{g(d)}\rvert=\begin{cases} O(x^{1/2}) & \text{if } r=2, \\ O(x^{1/3}) & \text{if } r\geq 3. \end{cases} \end{align} $$

Let $(\kappa ,\lambda )$ be an exponent pair such that ${1}/{2}<{\lambda }/{(1+\kappa )}\ (< 1)$ . Trivially, from (2.1),

(2.2) $$ \begin{align} \sum_{d\leq x}\lvert{g(d)}\rvert=O(x^{{\lambda}/{(1+\kappa)}}). \end{align} $$

For $x>1$ ,

$$ \begin{align*} \sum_{n\in S(x)}\mu_r(n)&=\sum_{n\in S(x)}\sum_{d\mid n}g(d)=\sum_{d\leq x}g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}}} }1\\ &=\sum_{d\leq x^{1/4}\log^{-3/2} x}g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}}} }1+\sum_{ x^{1/4}\log^{-3/2} x< d\leq x}g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}} }}1. \end{align*} $$

We use Lemma 1.1 to compute the first sum. We have

$$ \begin{align*} \sum_{d\leq x^{1/4}\log^{-3/2} x} g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}} }}1&=\sum_{d\leq x^{1/4}\log^{-3/2} x}g(d)\bigg(\frac{2x^{1/2}}{d }+ O \bigg(\frac{x^{1/3}}{d^{1/3}}\log x\bigg)\bigg)\\ &=2x^{1/2}\sum_{d\leq x^{1/4}\log^{-3/2} x}\frac{g(d)}{d }+O\bigg(x^{1/3}\log x\sum_{d\leq x^{1/4}\log^{-3/2} x} \frac{\lvert{g(d)}\rvert}{d^{1/3} }\bigg). \end{align*} $$

Denote the first and the second sums on the right-hand side by $\Sigma _1$ and $\Sigma _2$ , respectively. Using partial summation (or Abel’s identity [Reference Apostol2, Theorem 4.2]) and (2.2),

$$ \begin{align*} \sum_{d\leq x^{1/4}\log^{-3/2} x}\frac{g(d)}{d }&=\sum_{d=1}^\infty \frac{g(d)}{d }-\sum_{d> x^{1/4}\log^{-3/2} x}\frac{g(d)}{d } =\sum_{d=1}^\infty \frac{g(d)}{d }+O \bigg(\sum_{d> x^{1/4}\log^{-3/2} x}\frac{\lvert{g(d)}\rvert}{d }\bigg) \\ &=\sum_{d=1}^\infty \frac{g(d)}{d }+O( x^{-1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)} ) \end{align*} $$

and so

$$ \begin{align*} \Sigma_1=2x^{1/2}\sum_{d=1}^\infty \frac{g(d)}{d }+O( x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)} ). \end{align*} $$

Again from (2.2), by Abel’s identity,

$$ \begin{align*} \sum_{d\leq x^{1/4}\log^{-3/2} x}\frac{\lvert{g(d)}\rvert}{d^{1/3} }\ll x^{-1/12+\lambda/4(1+\kappa)}(\log x)^{1/2-3\lambda/2(1+\kappa)} \end{align*} $$

and so

$$ \begin{align*} \Sigma_2=O( x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)} ). \end{align*} $$

Then,

$$ \begin{align*} \sum_{d\leq x^{1/4}\log^{-3/2} x}g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}}} }1=2x^{1/2}\sum_{d=1}^\infty \frac{g(d)}{d }+O( x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)} ). \end{align*} $$

Next, we bound the second sum. Using $\lvert {S(x)}\rvert =O(x^{1/2})$ ,

$$ \begin{align*} \sum_{ x^{1/4}\log^{-3/2} x< d\leq x}g(d)\sum_{\substack{n\in S(x)\\ n \, \equiv\, {0\, \textrm{(mod} \; d\textrm{)}}} }1=O\bigg(x^{1/2}\sum_{ x^{1/4}\log^{-3/2} x< d\leq x}\frac{\lvert{g(d)}\rvert}{d}\bigg). \end{align*} $$

By Abel’s identity and (2.2), we arrive at

$$ \begin{align*} x^{1/2}\sum_{ x^{1/4}\log^{-3/2} x< d\leq x}\frac{\lvert{g(d)}\rvert}{d}\ll x^{1/4+\lambda/4(1+\kappa)}(\log x)^{3/2-3\lambda/2(1+\kappa)}, \end{align*} $$

and Theorem 1.4 follows.

Proof of Theorem 1.5.

The proof is the same as the proof of Theorem 1.4. We assume the Riemann hypothesis. Thus, we can replace (2.1) by

(2.3) $$ \begin{align} \sum_{d\leq x}\lvert{g(d)}\rvert=O(x^{{1}/{4}+\epsilon}). \end{align} $$

Using (2.3), we choose the exponent pairs $(\kappa ,\lambda )$ such that ${1}/{4}<{\lambda }/{(1+\kappa )}$ . The result follows.

Footnotes

This work was financially supported by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Grant No. RGNS 63-40.

References

Abercrombie, A. G., Banks, W. D. and Shparlinski, I. E., ‘Arithmetic functions on Beatty sequences’, Acta Arith. 136 (2009), 8189.CrossRefGoogle Scholar
Apostol, T. M., Introduction to Analytic Number Theory (Springer, New York, 1976).Google Scholar
Bordellés, O., ‘On certain sums of number theory’, Int. J. Number Theory 18(9) (2022), 20532074.CrossRefGoogle Scholar
Bordellés, O., Dai, L., Heyman, R., Pan, H. and Shparlinski, I. E., ‘On a sum involving the Euler function’, J. Number Theory 202 (2019), 278297.CrossRefGoogle Scholar
Cao, X. D. and Zhai, W. G., ‘ The distribution of square-free numbers of the form $\left\lfloor {n}^c\right\rfloor$ ’, J. Théor. Nombres Bordeaux 10(2) (1998), 287299.CrossRefGoogle Scholar
Cao, X. D. and Zhai, W. G., ‘On the distribution of square-free numbers of the form $\left\lfloor {n}^c\right\rfloor$ (II)’, Acta Math. Sinica (Chin. Ser.) 51 (2008), 11871194.Google Scholar
Deshouillers, J. M., ‘A remark on cube-free numbers in Segal–Piatetski-Shapiro sequences’, Hardy-Ramanujan J. 41 (2019), 127132.Google Scholar
Goryashin, D. V., ‘ Squarefree numbers in the sequence $\left\lfloor \alpha {n}\right\rfloor$ ’, Chebyshevskiĭ Sb. 14(3) (2013), 4248.Google Scholar
Gűloğlu, A. M. and Nevans, C. W., ‘Sums of multiplicative functions over a Beatty sequence’, Bull. Aust. Math. Soc. 78 (2008), 327334.CrossRefGoogle Scholar
Heyman, R., ‘Cardinality of a floor function set’, Integers 19 (2019), Article no. A67.Google Scholar
Ivić, A., The Theory of the Riemann Zeta Function (Wiley, New York, 1985).Google Scholar
Liu, K., Wu, J. and Yang, Z.-S., ‘On some sums involving the integral part function’, Preprint, 2021, arXiv:2109.01382v1.Google Scholar
Rieger, G. J., ‘Remark on a paper of Stux concerning squarefree numbers in non-linear sequences’, Pacific J. Math. 78(1) (1978), 241242.CrossRefGoogle Scholar
Srichan, T., ‘On the distribution of $\left(k,r\right)$ -integers in Piatetski-Shapiro sequences’, Czechoslovak Math. J. 71(4) (2021), 10631070.CrossRefGoogle Scholar
Srichan, T., ‘Multiplicative functions of special type on Piatetski-Shapiro sequences’, Math. Slovaca 72(5) (2022), 11451150.CrossRefGoogle Scholar
Stucky, J., ‘The fractional sum of small arithmetic functions’, J. Number Theory 238 (2022), 731739.CrossRefGoogle Scholar
Stux, I. E., ‘Distribution of squarefree integers in non-linear sequences’, Pacific J. Math. 59(2) (1975), 577584.CrossRefGoogle Scholar
Tangsupphathawat, P., Srichan, T. and Laohakosol, V., ‘Consecutive square-free numbers in Piatetski-Shapiro sequences’, Bull. Aust. Math. Soc. 105(2) (2022), 217222.CrossRefGoogle Scholar
Veasna, K., Srichan, T. and Mavecha, S., ‘On $r$ -free integers in Beatty sequences’, Bol. Soc. Mat. Mex. (3) 28(2) (2022), 110.Google Scholar
Yu, Y. and Wu, J., ‘Distribution of elements of a floor function set in arithmetical progressions’, Bull. Aust. Math. Soc., to appear. Published online (1 March 2022).CrossRefGoogle Scholar
Zhang, M. and Jinjiang, L., ‘ Distribution of cube-free numbers with form $\left[{n}^c\right]$ ’, Front. Math. China 12(6) (2017), 15151525.CrossRefGoogle Scholar
Zhang, W., ‘On general sums involving the floor function with applications to $k$ -free numbers’, Preprint, 2021, arXiv:2112.06156.Google Scholar