No CrossRef data available.
Article contents
DEGREES OF BRAUER CHARACTERS AND NORMAL SYLOW $p$-SUBGROUPS
Part of:
Representation theory of groups
Published online by Cambridge University Press: 08 January 2020
Abstract
Let $p$ be a prime, $G$ a solvable group and $P$ a Sylow $p$-subgroup of $G$. We prove that $P$ is normal in $G$ if and only if $\unicode[STIX]{x1D711}(1)_{p}^{2}$ divides $|G:\ker (\unicode[STIX]{x1D711})|_{p}$ for all monomial monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 102 , Issue 2 , October 2020 , pp. 237 - 239
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
References
Chen, X., Cossey, J. P., Lewis, M. L. and Tong-Viet, H. P., ‘Blocks of small defect in alternating groups and squares of Brauer character degrees’, J. Group Theory 20 (2017), 1155–1173.CrossRefGoogle Scholar
Chen, X. and Lewis, M. L., ‘Squares of degrees of Brauer characters and monomial Brauer characters’, Bull. Aust. Math. Soc. 100 (2019), 58–60.CrossRefGoogle Scholar
Chen, X. and Lewis, M. L., ‘Monolithic Brauer characters’, Bull. Aust. Math. Soc. 100 (2019), 434–439.CrossRefGoogle Scholar
Gallagher, P. X., ‘Group characters and normal Hall subgroups’, Nagoya Math. J. 21 (1962), 223–230.CrossRefGoogle Scholar
Isaacs, I. M., ‘Large orbits in actions of nilpotent groups’, Proc. Amer. Math. Soc. 127 (1999), 45–50.CrossRefGoogle Scholar
Navarro, G., Characters and Blocks of Finite Groups (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Tong-Viet, H. P., ‘Brauer characters and normal Sylow p-subgroups’, J. Algebra 503 (2018), 265–276; ‘Corrigendum to “Brauer characters and normal Sylow $p$-subgroups”’, J. Algebra 505 (2018), 597–598.CrossRefGoogle Scholar