Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T01:30:20.272Z Has data issue: false hasContentIssue false

COMPLETE SPACELIKE SUBMANIFOLDS IN DE SITTER SPACES WITH $R= aH+ b$

Published online by Cambridge University Press:  13 February 2013

JIANCHENG LIU*
Affiliation:
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, PR China
JINGJING ZHANG
Affiliation:
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we give a classification of spacelike submanifolds with parallel normalised mean curvature vector field and linear relation $R= aH+ b$ of the normalised scalar curvature $R$ and the mean curvature $H$ in the de Sitter space ${ S}_{p}^{n+ p} (c)$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Abe, N., Koike, N. and Yamaguchi, S., ‘Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form’, Yokohama Math. J. 35 (1987), 123136.Google Scholar
Akutagawa, K., ‘On spacelike hypersurfaces with constant mean curvature in the de Sitter space’, Math. Z. 196 (1987), 1319.CrossRefGoogle Scholar
Alencar, H., do Carmo, M. and Colares, A. G., ‘Stable hypersurfaces with constant scalar curvature’, Math. Z. 213 (1993), 117131.CrossRefGoogle Scholar
Barbosa, E. R. and Araújo, K. O., ‘On complete submanifolds with bounded mean curvature’, J. Geom. Phys. 61 (2011), 19571964.CrossRefGoogle Scholar
Camargo, F. E. C., Chaves, R. M. B. and Sousa, L. A. M. Jr, ‘Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in de Sitter space’, Differ. Geom. Appl. 26 (2008), 592599.CrossRefGoogle Scholar
Camargo, F. E. C., Chaves, R. M. B. and Sousa, L. A. M. Jr, ‘New characterizations of complete spacelike submanifolds in semi-Riemannian space forms’, Kodai Math. J. 32 (2009), 209230.CrossRefGoogle Scholar
Chen, B. Y., ‘Surfaces with parallel normalized mean curvature vector’, Monatsh. Math. 90 (1980), 185194.CrossRefGoogle Scholar
Cheng, Q. M., ‘Complete space-like hypersurfaces of a de Sitter space with $r= kH$’, Mem. Fac. Sci., Kyushu University, Ser. A 44 (1990), 6777.Google Scholar
Cheng, Q. M. and Ishikawa, S., ‘Spacelike hypersurfaces with constant scalar curvature’, Manuscripta Math. 95 (1998), 499505.CrossRefGoogle Scholar
Cheng, S. Y. and Yau, S. T., ‘Hypersurfaces with constant scalar curvature’, Math. Ann. 225 (1977), 195204.CrossRefGoogle Scholar
Goddard, A., ‘Some remarks on the existence of spacelike hypersurfaces of constant mean curvature’, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489495.CrossRefGoogle Scholar
Hou, Z. H. and Yang, D., ‘Linear Weingarten spacelike hypersurfaces in de Sitter space’, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 769780.CrossRefGoogle Scholar
Li, H., ‘Global rigidity theorems of hypersurfaces’, Ark. Mat. 35 (1997), 327351.CrossRefGoogle Scholar
Liu, J. C. and Zhang, D. Y., ‘Gap phenomena for complete space-like submanifolds with constant scalar curvature in de Sitter spaces’, Chinese Ann. Math. 29A (5) (2008), 689696.Google Scholar
Montiel, S., ‘An integral inequality for compact spacelike hypersurfaces in the de Sitter space and applications to the case of constant mean curvature’, Indiana Univ. Math. J. 37 (1988), 909917.CrossRefGoogle Scholar
Santos, W., ‘Submanifolds with parallel mean curvature vector in spheres’, Tôhoku Math. J. 46 (1994), 403415.CrossRefGoogle Scholar
Shu, S. C., ‘Complete spacelike hypersurfaces in a de Sitter space’, Bull. Aust. Math. Soc. 73 (2006), 916.Google Scholar
Zhang, J. F., Submanifolds with Constant Scalar Curvature and the Harmonic Functions of Finsler Manifolds, PhD Thesis, Zhejiang University, Hangzhou, China, 2005.Google Scholar
Zheng, Y., ‘On space-like hypersurfaces in the de Sitter space’, Ann. Glob. Anal. Geom. 13 (1995), 317321.CrossRefGoogle Scholar