Published online by Cambridge University Press: 17 April 2009
Let α > 0 and let f[α](z) be the αth fractional derivative of an analytic function f on the unit disc D. In this paper we show that f ∈ BMOA if and only if |f[α](z)|2 (l - |z|2)2α−1dA(z) is a Carleson measure and f ∈ VMOA if and only if |f[α](z)|2 (1 − |z|2)2α−1dA(z) is a vanishing Carleson measure, where A denotes the normalised Lebesgue measure on D. Hence a significant extension of familiar characterisations for analytic functions of bounded and vanishing mean oscillation is obtained.