No CrossRef data available.
Article contents
CENTRE OF BANACH ALGEBRA VALUED BEURLING ALGEBRAS
Published online by Cambridge University Press: 13 September 2021
Abstract
We prove that for a Banach algebra A having a bounded
$\mathcal {Z}(A)$
-approximate identity and for every
$\mathbf {[IN]}$
group G with a weight w which is either constant on conjugacy classes or satisfies
$w \geq 1$
,
$\mathcal {Z}(L^{1}_{w}(G) \otimes ^{\gamma } A) \cong \mathcal {Z}(L^{1}_{w}(G)) \otimes ^{\gamma } \mathcal {Z}(A)$
. As an application, we discuss the conditions under which
$\mathcal {Z}(L^{1}_{\omega }(G,A))$
enjoys certain Banach algebraic properties, such as weak amenability or semisimplicity.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc.
Footnotes
Bharat Talwar is supported by a Senior Research Fellowship of CSIR (file number 09/045(1442)/ 2016-EMR-I).
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230130122306748-0221:S0004972721000691:S0004972721000691_inline278.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230130122306748-0221:S0004972721000691:S0004972721000691_inline279.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230130122306748-0221:S0004972721000691:S0004972721000691_inline280.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230130122306748-0221:S0004972721000691:S0004972721000691_inline281.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230130122306748-0221:S0004972721000691:S0004972721000691_inline282.png?pub-status=live)