Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:58:57.744Z Has data issue: false hasContentIssue false

THE BOUNDARY VOLUME OF A LATTICE POLYTOPE

Published online by Cambridge University Press:  26 September 2011

GÁBOR HEGEDÜS
Affiliation:
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, A-4040 Linz, Austria (email: [email protected])
ALEXANDER M. KASPRZYK*
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a d-dimensional convex lattice polytope P, a formula for the boundary volume vol(∂P) is derived in terms of the number of boundary lattice points on the first ⌊d/2⌋ dilations of P. As an application we give a necessary and sufficient condition for a polytope to be reflexive, and derive formulas for the f-vector of a smooth polytope in dimensions three, four, and five. We also give applications to reflexive order polytopes, and to the Birkhoff polytope.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Batyrev, V. V., ‘On the classification of smooth projective toric varieties’, Tohoku Math. J. 43(4) (1991), 569585.CrossRefGoogle Scholar
[2]Batyrev, V. V., ‘Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties’, J. Algebraic Geom. 3(3) (1994), 493535.Google Scholar
[3]Batyrev, V. V., ‘On the classification of toric Fano 4-folds’, J. Math. Sci. (New York) 94(1) (1999), 10211050.CrossRefGoogle Scholar
[4]Beck, M., De Loera, J. A., Develin, M., Pfeifle, J. and Stanley, R. P., ‘Coefficients and roots of Ehrhart polynomials’, in: Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization, Contemporary Mathematics, 374 (American Mathematical Society, Providence, RI, 2005), pp. 1536.CrossRefGoogle Scholar
[5]Beck, M. and Pixton, D., ‘The Ehrhart polynomial of the Birkhoff polytope’, Discrete Comput. Geom. 30(4) (2003), 623637.CrossRefGoogle Scholar
[6]Beck, M. and Robins, S., Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics (Springer, New York, 2007).Google Scholar
[7]Beck, M. and Sottile, F., ‘Irrational proofs for three theorems of Stanley’, European J. Combin. 28(1) (2007), 403409.CrossRefGoogle Scholar
[8]Bremner, D. and Klee, V., ‘Inner diagonals of convex polytopes’, J. Combin. Theory Ser. A 87(1) (1999), 175197.CrossRefGoogle Scholar
[9]Canfield, E. R. and McKay, B. D., ‘The asymptotic volume of the Birkhoff polytope’, Online J. Anal. Comb. (4) (2009), Art. 2, 4.Google Scholar
[10]Casagrande, C., ‘The number of vertices of a Fano polytope’, Ann. Inst. Fourier (Grenoble) 56(1) (2006), 121130.CrossRefGoogle Scholar
[11]Danilov, V. I., ‘The geometry of toric varieties’, Uspekhi Mat. Nauk 33(2(200)) (1978), 85134, 247.Google Scholar
[12]Diaz, R. and Robins, S., ‘The Ehrhart polynomial of a lattice polytope’, Ann. of Math. (2) 145(3) (1997), 503518.CrossRefGoogle Scholar
[13]Ehrhart, E., ‘Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires’, J. Reine Angew. Math. 227 (1967), 2549.Google Scholar
[14]Fiset, M. H. J. and Kasprzyk, A. M., ‘A note on palindromic δ-vectors for certain rational polytopes’, Electron. J. Combin. 15(N18).Google Scholar
[15]Haase, C. and Melnikov, I. V., ‘The reflexive dimension of a lattice polytope’, Ann. Comb. 10 (2006), 211217.CrossRefGoogle Scholar
[16]Hibi, T., ‘Ehrhart polynomials of convex polytopes, h-vectors of simplicial complexes, and nonsingular projective toric varieties’, in: Discrete and Computational Geometry (New Brunswick, NJ, 1989/1990), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 6 (American Mathematical Society, Providence, RI, 1991), pp. 165177.Google Scholar
[17]Hibi, T., ‘A lower bound theorem for Ehrhart polynomials of convex polytopes’, Adv. Math. 105(2) (1994), 162165.CrossRefGoogle Scholar
[18]Kasprzyk, A. M., ‘Toric Fano varieties and convex polytopes’, PhD Thesis, University of Bath, Available from http://hdl.handle.net/10247/458.Google Scholar
[19]Klee, V., ‘A combinatorial analogue of Poincaré’s duality theorem’, Canad. J. Math. 16 (1964), 517531.CrossRefGoogle Scholar
[20]Kołodziejczyk, K., ‘On the volume of lattice manifolds’, Bull. Aust. Math. Soc. 61(2) (2000), 313318.CrossRefGoogle Scholar
[21]Macdonald, I. G., ‘The volume of a lattice polyhedron’, Proc. Cambridge Philos. Soc. 59 (1963), 719726.CrossRefGoogle Scholar
[22]Macdonald, I. G., ‘Polynomials associated with finite cell-complexes’, J. Lond. Math. Soc. (2) 4 (1971), 181192.CrossRefGoogle Scholar
[23]Øbro, M., ‘An algorithm for the classification of smooth Fano polytopes’, arXiv:0704.0049v1 [math.CO], Classifications available from http://grdb.lboro.ac.uk/.Google Scholar
[24]Pak, I., ‘Four questions on Birkhoff polytope’, Ann. Comb. 4(1) (2000), 8390.CrossRefGoogle Scholar
[25]Park, H. S., ‘The f-vectors of some toric Fano varieties’, J. Appl. Math. Comput. 11(1–2) (2003), 437444.Google Scholar
[26]Pick, G. A., ‘Geometrisches zur Zahlenlehre’, Sitzungber. Lotos 19 (1899), 311319.Google Scholar
[27]Pommersheim, J. E., ‘Toric varieties, lattice points and Dedekind sums’, Math. Ann. 295(1) (1993), 124.CrossRefGoogle Scholar
[28]Reeve, J. E., ‘On the volume of lattice polyhedra’, Proc. Lond. Math. Soc. (3) 7 (1957), 378395.CrossRefGoogle Scholar
[29]Stanley, R. P., ‘A chromatic-like polynomial for ordered sets’, in: Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) (Univ. North Carolina, Chapel Hill, N.C, 1970), pp. 421427.Google Scholar
[30]Stanley, R. P., ‘Hilbert functions of graded algebras’, Adv. Math. 28(1) (1978), 5783.CrossRefGoogle Scholar
[31]Stanley, R. P., ‘Decompositions of rational convex polytopes’, Ann. Discrete Math. 6 (1980), 333342; Combinatorial Mathematics, Optimal Designs and their Applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).CrossRefGoogle Scholar
[32]Stanley, R. P., ‘Two poset polytopes’, Discrete Comput. Geom. 1(1) (1986), 923.CrossRefGoogle Scholar
[33]Stanley, R. P., Enumerative Combinatorics Vol. 1, Cambridge Studies in Advanced Mathematics, 49 (Cambridge University Press, Cambridge, 1997), with a foreword by Gian-Carlo Rota. Corrected reprint of the 1986 original.CrossRefGoogle Scholar
[34]Turner, L. R., ‘Inverse of the Vandermonde matrix with applications’. NASA Technical Note.Google Scholar