Article contents
THE BOCHNER–SCHOENBERG-EBERLEIN PROPERTY OF EXTENSIONS OF BANACH ALGEBRAS AND BANACH MODULES
Published online by Cambridge University Press: 09 July 2021
Abstract
Let A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra ${A\oplus _1 X}$ , where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on $A\oplus _1 X$ . We show that the module extension Banach algebra $A\oplus _1 X$ is a BSE Banach algebra if and only if A is a BSE Banach algebra and $X=\{0\}$ . Furthermore, we consider $A\oplus _1 X$ as a Banach $A\oplus _1 X$ -module and characterise the BSE module property on $A\oplus _1 X$ . We show that $A\oplus _1 X$ is a BSE Banach $A\oplus _1 X$ -module if and only if A and X are BSE Banach A-modules.
Keywords
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 105 , Issue 1 , February 2022 , pp. 134 - 145
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc.
References
- 3
- Cited by