Published online by Cambridge University Press: 14 January 2021
We show that there are biases in the number of appearances of the parts in two residue classes in the set of ordinary partitions. More precisely, let $p_{j,k,m} (n)$ be the number of partitions of n such that there are more parts congruent to j modulo m than parts congruent to k modulo m for $m \geq 2$ . We prove that $p_{1,0,m} (n)$ is in general larger than $p_{0,1,m} (n)$ . We also obtain asymptotic formulas for $p_{1,0,m}(n)$ and $p_{0,1,m}(n)$ for $m \geq 2$ .
Byungchan Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1F1A1043415); Eunmi Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF–2020R1I1A1A01065877, NRF–2019R1A6A1A11051177).