Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:18:56.410Z Has data issue: false hasContentIssue false

Asymptotical smoothness and its applications

Published online by Cambridge University Press:  17 April 2009

Wiesława Kaczor
Affiliation:
Instytut Matematyki, University M. Curie-Sklodowska, 20–031 Lublin, Poland e-mail: [email protected], [email protected]
Stanisław Prus
Affiliation:
Instytut Matematyki, University M. Curie-Sklodowska, 20–031 Lublin, Poland e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we introduce the notion of asymptotical smoothness of a Banach space and show that it is strongly related to the Kadec-Klee property. This notion is then applied to obtain new theorems about weak convergence of almost orbits of three various types of semigroups of mappings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Aksoy, A.G. and Khamsi, M.A., Nonstandard methods in fixed point theory (Springer-Verlag, New York, 1990).CrossRefGoogle Scholar
[2]Banach, S., Œuvres, Éditions Scientifiques de Pologne, vol. II (PWN, Warsaw, 1979).Google Scholar
[3]Bessaga, C. and Pełczyński, A., ‘On bases and unconditional convergence of series in Banach spaces’, Studia Math. 17 (1958), 151164.CrossRefGoogle Scholar
[4]Castillo, J.M.F. and González, M., Three space problem in Banach space theory, Lecture Notes in Mathematics 1667 (Springer-Verlag, Berlin, 1997).CrossRefGoogle Scholar
[5]Day, M.M., Normed linear spaces (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1962).CrossRefGoogle Scholar
[6]Deville, R., Godefroy, G. and Zizler, V., Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (Longman Scientific and Technical, Harlow, 1993).Google Scholar
[7]Falset, J. García, Kaczor, W., Kuczumow, T. and Reich, S., ‘Weak convergence theorems for asymptotically nonexpansive mappings and semigroups’, Nonlinear Anal. 43 (2001), 377401.CrossRefGoogle Scholar
[8]James, R.C., ‘A non-reflexive Banach space isometric to its second conjugate’, Proc. Nat. Acad. Sci U.S.A. 37 (1951), 174177.CrossRefGoogle ScholarPubMed
[9]Kaczor, W., ‘Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups’, (preprint).Google Scholar
[10]Kaczor, W., Kuczumow, T. and Reich, S., ‘A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense’, J. Math. Anal. Appl. 246 (2000), 127.CrossRefGoogle Scholar
[11]Kaczor, W., Kuczumow, T. and Reich, S., ‘A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense’, Nonlinear Anal. 47 (2001), 27312742.CrossRefGoogle Scholar
[12]Kaczor, W. and Sşkowski, T., ‘Weak convergence of iteration process for nonexpansive mappings and nonexpansive semigroups’, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 52 (1998), 7177.Google Scholar
[13]Kim, J.K. and Li, G., ‘Asymptotic behaviour for an almost-orbit of nonexpansive semigroups in Banach spaces’, Bull. Austral. Math. Soc. 61 (2000), 345350.CrossRefGoogle Scholar
[14]Kirk, W.A., ‘An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces’, Proc. Amer. Math. Soc. 107 (1989), 411415.CrossRefGoogle Scholar
[15]Li, G., ‘Weak convergence and non-linear ergodic theorems for reversible semigroups of non-lipschitzian mappings’, J. Math. Anal. Appl. 206 (1997), 451464.Google Scholar
[16]Li, G., ‘Asymptotic behavior for commutative semigroups of asymptotically nonexpansive-type mappings’, Nonlinear Anal. 42 (2000), 175183.CrossRefGoogle Scholar
[17]Li, G. and Sims, B., ‘Ergodic theorem and strong convergence of averaged approximations for non-lipschitzian mappings in Banach spaces’, (preprint).Google Scholar
[18]Maluta, E., Prus, S. and Szczepanik, M., ‘On Milman's moduli for Banach spaces’, Abst. Appl. Anal. 6 (2001), 115129.CrossRefGoogle Scholar
[19]Milman, V.D., ‘Geometric theory of Banach spaces. Part II, Geometry of the unit sphere’, (Russian), Usp. Mat. Nauk. 26 (1971), 73149. English translation: Russian Math. Surv. 26 (1971), 79–163.Google Scholar
[20]Oka, H., ‘Nonlinear ergodic theorems for commutative semigroups of asymptotically non-expansive mappings’, Nonlinear Anal. 7 (1992), 619635.CrossRefGoogle Scholar
[21]Opial, Z., ‘Weak convergence of the sequence of successive approximations for nonexpansive mappings’, Bull. Amer. Math. Soc. 73 (1967), 591597.CrossRefGoogle Scholar
[22]Prus, S., ‘On infinite dimensional uniform smoothness of Banach spaces’, Comment. Math. Univ. Carolinae 40 (1999), 97105.Google Scholar
[23]Prus, S., ‘Geometrical background of metric fixed point theory’, in Handbook of Metric Fixed Point Theory, (Kirk, W. A. and Sims, B., Editors) (Kluwer Academic Publishers, Dordrecht, 2001), pp. 93132.CrossRefGoogle Scholar
[24]Singer, I., Bases in Banach spaces II (Springer-Verlag, Berlin, 1981).CrossRefGoogle Scholar
[25]Talagrand, M., ‘Renormages de quelques C (K)Israel J. Math. 54 (1986), 327334.CrossRefGoogle Scholar