Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T14:38:55.551Z Has data issue: false hasContentIssue false

ASYMPTOTIC PROPERTIES OF KOLMOGOROV WIDTHS

Published online by Cambridge University Press:  25 March 2010

MIKHAIL I. OSTROVSKII*
Affiliation:
Department of Mathematics and Computer Science, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider two problems concerning Kolmogorov widths of compacts in Banach spaces. The first problem is devoted to relations between the asymptotic behavior of the sequence of n-widths of a compact and of its projections onto a subspace of codimension one. The second problem is devoted to comparison of the sequence of n-widths of a compact in a Banach space 𝒴 and of the sequence of n-widths of the same compact in other Banach spaces containing 𝒴 as a subspace.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Hutton, C. V., ‘On the approximation numbers of an operator and its adjoint’, Math. Ann. 210 (1974), 277280.CrossRefGoogle Scholar
[2]Ismagilov, R. S., ‘Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials’, Uspekhi Mat. Nauk 29(3(177)) (1974), 161178 (in Russian); Russian Math. Surveys 29(3) (1974), 169–186 (English translation).Google Scholar
[3]Johnson, W. B. and Lindenstrauss, J., ‘Basic concepts in the geometry of Banach spaces’, in: Handbook of the Geometry of Banach Spaces, Vol. 1 (eds. Johnson, W. B. and Lindenstrauss, J.) (Elsevier, Amsterdam, 2001), pp. 184.CrossRefGoogle Scholar
[4]Kashin, B. S., ‘The widths of certain finite-dimensional sets and classes of smooth functions’, Izv. Akad. Nauk SSSR Ser. Mat. 41(2) (1977), 334351 (in Russian); Math. USSR-Izv. 11(2) (1977), 317–333 (1978) (English translation).Google Scholar
[5]Kochurov, A. S., ‘Absolute widths and cowidths’, Mat. Zametki 48(1) (1990), 3846 (in Russian); Math. Notes 48 (1990), 647–652 (English translation).Google Scholar
[6]Kolmogoroff, A., ‘Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse’, Ann. of Math. (2) 37 (1936), 107111.CrossRefGoogle Scholar
[7]Lorentz, G. G., Golitschek, M. v. and Makovoz, Y., Constructive Approximation. Advanced Problems, Grundlehren der mathematischen Wissenschaften, 304 (Springer, Berlin, 1996).CrossRefGoogle Scholar
[8]Oikhberg, T., ‘Absolute widths of some embeddings’, J. Approx. Theory 81(1) (1995), 120126.CrossRefGoogle Scholar
[9]Ostrovskii, M. I. and Shulman, V. S., ‘Weak operator topology, operator ranges and operator equations via Kolmogorov widths’, Integral Equations Operator Theory 65 (2009), 551572.CrossRefGoogle Scholar
[10]Pełczyński, A., ‘Projections in certain Banach spaces’, Studia Math. 19 (1960), 209228.CrossRefGoogle Scholar
[11]Pinkus, A., n-Widths in the Approximation Theory (Springer, Berlin, 1985).CrossRefGoogle Scholar
[12]Pisier, G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, 94 (Cambridge University Press, Cambridge, 1989).CrossRefGoogle Scholar
[13]Szarek, S. J., ‘On Kashin’s almost Euclidean orthogonal decomposition of 1n’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26(8) (1978), 691694.Google Scholar
[14]Tikhomirov, V. M., ‘Diameters of sets in functional spaces and the theory of best approximations’, Uspekhi Mat. Nauk 15(3) (1960), 81120 (in Russian); Russian Math. Surveys, 15(3) (1960), 75–111 (English translation).Google Scholar