Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T06:34:32.041Z Has data issue: false hasContentIssue false

Applications of a minimax inequality on H-spaces

Published online by Cambridge University Press:  17 April 2009

Xie Ping Ding
Affiliation:
Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan, China
Won Kyu Kim
Affiliation:
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
Kok-Keong Tan
Affiliation:
Department of Mathematics Education, Chungbuk National University, Cheongju, Korea
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By applying a minimax inequality on H-spaces from our earlier work, new generalisations of well-known intersection theorems concerning sets with convex sections and minimax inequalities of von Neumann type are obtained. Our results generalise the corresponding results of Ben-El-Mechaiekh, Deguire and Granas, Fan, Liu, Shih-Tan, Sion and Tarafdar.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Bardaro, C. and Ceppitelli, R., ‘Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities’, J. Math. Anal. Appl. 132 (1988), 484490.CrossRefGoogle Scholar
[2]Ben-El-Mechaiekh, H., Deguire, P. and Granas, A., ‘Points fixes et coincidences pour les fonctions multivoques II(Applications de type ø et ø*)’, C.R. Acad. Sci. Paris Ser. I Math. 295 (1982), 381384.Google Scholar
[3]Browder, F.E., ‘The fixed point theory of multi-valued mappings in topological vector spaces’, Math. Ann. 177 (1968), 283301.CrossRefGoogle Scholar
[4]Browder, F.E., ‘Coincidence theorems, minimax theorems and variational inequalities’, in Conference in Modern Analysis and Probability: Contemp. Math.6, pp. 6780 (Amer. Math. Soc., Provendence, R.I., 1984).CrossRefGoogle Scholar
[5]Ding, X.P., Kim, W.K. and Tan, K.K., ‘A new minimax inequality on H-spaces with applications’, Bull. Austral. Math. Soc. 41 (1990), 457473.CrossRefGoogle Scholar
[6]Ding, X.P. and Tan, K.K., ‘Fixed point theorems and equilibria of non-compact generalized games’, (submitted).Google Scholar
[7]Fan, K., ‘A generalization of Tychonoff's fixed point theorem’, Math. Ann. 142 (1961), 305310.CrossRefGoogle Scholar
[8]Fan, K., ‘Sur un théorème minimax’, C. R. Acad. Sci. Paris Ser. I 259 (1964), 39253928.Google Scholar
[9]Fan, K., ‘Applications of a theorem concerning sets with convex sections’, Math. Ann. 163 (1966), 189203.CrossRefGoogle Scholar
[10]Fan, K., ‘Sets with convex sections’, in Proceedings of the Colloquium on Convexity, pp. 7277 (Copenhagen, 1965). (Københavns Univ. Mat. Inst. 1967).Google Scholar
[11]Fan, K., ‘A minimax inequality and applications’, in Inequalities III, Editor Shisha, O., pp. 103113 (Academic Press, New York, London, 1972).Google Scholar
[12]Granas, A. and Liu, F.C., ‘Remark on a theorem of Ky Fan concerning system of inequalities’, Bull. Inst. Math. Acad. Sinica 11 (1983), 639643.Google Scholar
[13]Kneser, H., ‘Sur un théorème fondamental de la théorie des jeux’, C.R. Acad. Sci. Paris 234 (1952), 24182420.Google Scholar
[14]Liu, F.C., ‘A note on the von Neumann-Sion minimax principle’, Bull. Inst. Math. Acad. Sinica 6 (1978), 517524.Google Scholar
[15]von Neumann, J., ‘Zur theorie der gesellschaftsspiele’, Math. Ann. 100 (1928), 295320.CrossRefGoogle Scholar
[16]Shih, M.H. and Tan, K.K., ‘The Ky Fan minimax principle, sets with convex sections and variational inequalities’, in in Differential Geometry, Calculus of Variations and Their Applications: Lecture Notes in Pure and Appl. Math. 100, Editors Rassias, M. and Rassias, T., pp. 471480 (Dekker, New York, 1985).Google Scholar
[17]Shih, M.H. and Tan, K.K., ‘A minimax inequality and Browder–Hartman–Stampacchia variational inequalities for multi-valued monotone operators’: Proceedings of the Fourth Franco-SEAMS Conference (Chiang Mai,Thailand,May 1988).CrossRefGoogle Scholar
[18]Sion, M., ‘On general minimax theorems’, Pacific J. Math. 8 (1958), 171176.CrossRefGoogle Scholar
[19]Tarafdar, E., ‘On nonlinear variational inequalities’, Proc. Amer. Math. Soc. 67 (1977), 9598.CrossRefGoogle Scholar
[20]Tarafdar, E., ‘On minimax principles and sets with convex sections29, pp. 219226 (Publ. Math. Debrecen, 1982).Google Scholar
[21]Yen, C.L., ‘A minimax inequality and its applications to variational inequalities’, Pacific J. Math. 97 (1981), 477481.CrossRefGoogle Scholar